In the Kirby-Bauer test, bacteria are spread out over a solid growth media plate, and then antibiotic wafers (seen as white disks) are added to the plate.
What is Kirby Bauer Test?Areas of clear media surrounding the disks show that the antibiotic prevents bacterial growth after allowing the germs to develop overnight. As you get further from the source, less antibiotic is diffused into the media at a given concentration.
Therefore, the size of the clear bacterium-free zone that develops around the disk holding the antibiotic increases with the sensitivity of the bacteria to a certain antibiotic. (Commons; accessed through Wikipedia)
The antibiotic discs are layered on top of the bacterium that has been swabbed onto the agar. The further the antibiotic travels from the disc into the agar, the less it diffuses.
Therefore, In the Kirby-Bauer test, bacteria are spread out over a solid growth media plate, and then antibiotic wafers (seen as white disks) are added to the plate.
To learn more about Kirby Bauer test, refer to the link:
brainly.com/question/13258873
#SPJ4
What is reproductive mutation?
Most of the electrons removed from glucose by cellular respiration are used for which of the following processes?
a. Reducing NAD+ to NADH in glycolysis and the citric acid cycle
b. Producing a proton gradient for ATP synthesis in the mitochondria
c. Driving substrate-level phosphorylation in glycolysis
d. The second and third answers are correct.
e. The first two choices are correct.
The correct option is (e) i.e. the first two choices are correct. Most of the electrons removed from glucose by cellular respiration are used for the processes listed.
The oxidation of biological fuels in the presence of an inorganic electron acceptor, such as oxygen, during the process of cellular respiration results in considerable amounts of energy that are utilised to power the primary production of ATP. Eukaryotic mitochondrial cristae are the site of oxidative phosphorylation. It is made up of the electron transport chain, which generates a proton gradient (chemiosmotic potential) across the inner membrane's edge by oxidising the NADH produced by the Krebs cycle. When the chemiosmotic gradient drives the phosphorylation of ADP, the ATP synthase enzyme creates ATP. When the foreign oxygen receives the electrons, it reacts with two protons to form water. Numerous illnesses may have an impact on cellular respiration. Given how crucial cellular respiration is to bodily functions, many of these disorders have a significant negative effect on people. The most common conditions that affect glycolysis are pyruvate kinase insufficiency, erythrocyte hexokinase deficiency, and glucose phosphate isomerase deficiency.
To know more about cellular respiration please refer: https://brainly.com/question/29771613
#SPJ4
A model of the infection of a host cell by a virus is shown here. Which statements accurately describe the processes involved in viral infection and replication? Select two that apply.
The infection of a host cell by a virus is done, the virus releases the genetic content in the host cell, the genetic content is replicated using the host enzymes, and the viral infection spreads.
What is the cause of the viral infection?The viral infection is caused by the virus when it attaches to the host cell and releases its genetic content, which is later replicated in the host cell and released through the host cell and this is called the lytic cycle of the virus while in lysogenic cycle the virus keeps developing in the host cell as the genome is incorporated in the host genome.
Hence, the infection of a host cell by a virus is done, the virus releases the genetic content in the host cell, the genetic content is replicated using the host enzymes, and the viral infection spreads.
Learn more about the viral infection here.
https://brainly.com/question/28964805
#SPJ1
Which fact about those structures best supports one aspect of the theory of evolution?
The idea that the animals had a common ancestor is supported by the similarity of their bone structures.
Homologous structures: what do they mean?Organs or skeletal components of animals and organisms that are homologous reveal a relationship to a common ancestor because of their similarities. These structures don't have to have the same shape or function.
What do evolutionary homologous structures mean?Because they shared an ancestor, homologous structures are those that are shared by related organisms. These structures may or may not function in their descendants for the same reason. The illustration below shows the hands of numerous mammals. They all share the same basic skeletal makeup.
To know more about common ancestor visit:-
https://brainly.com/question/29788521
#SPJ4
Learning through Art: HIV Structure 6 of 9 DNA genes that direct the production of HIV protein RNA genes that direct production of more viruses recognizes proteins on the outside of target cells O. surrounds and protects the HIV genome produces a DNA copy of the HIV RNA genome helps HIV merge with a target cell's plasma membrane
The HIV genome encodes for a range of proteins that allow the virus to infect and replicate within host cells, as well as evade the host immune system.
What is HIV?The HIV virus has a complex structure that allows it to infect and replicate within host cells. The HIV genome consists of 9 genes that encode for various proteins that are necessary for the virus to function. These genes are encoded in either DNA or RNA. The DNA genes direct the production of HIV proteins, while the RNA genes direct the production of more viruses.
One important protein that is produced by the HIV genome is the envelope protein, which surrounds and protects the HIV genome. The envelope protein also helps HIV to merge with the plasma membrane of a target cell, allowing the virus to enter the cell and begin the process of replication. Another important protein produced by the HIV genome is reverse transcriptase, which helps the virus to produce a DNA copy of its RNA genome. This allows the virus to integrate its genome into the host cell's DNA, allowing it to replicate and produce more viruses.
Learn more about HIV, here:
https://brainly.com/question/10667653
#SPJ4
Does everyone with cystic fibrosis have the same genetic mutation?
Cystic fibrosis is a recessive type of disease, which means that a person must have a mutation in both copies of the CFTR gene in order to have CF. If someone has a mutation in only one copy of the CFTR gene and the other copy is normal, they do not have CF and are a CF carrier.
What is Cystic Fibrosis?In cystic fibrosis it affects the cells which produce mucus, sweat and digestive juices, causing these fluids to become thick and sticky. They then plug the tubes, ducts, and passageways. It is an inherited disorder that causes severe damage to the lungs, digestive system, and other organs in the body.
Symptoms of Cystic Fibrosis are as follows :
A persistent cough that produces thick mucus (sputum)WheezingExercise intoleranceRepeated lung infectionsInflamed nasal passages or a stuffy noseRecurrent sinusitisMutations in the CFTR gene cause the CFTR protein to be made poorly or not at all, leading to a buildup of thick mucus, frequent infections in the lungs, destruction of the pancreas, and complications in other organs.
Thus, Cystic fibrosis is a recessive type of disease, which means that a person must have a mutation in both copies of the CFTR gene in order to have CF. If someone has a mutation in only one copy of the CFTR gene and the other copy is normal, they do not have CF and are a CF carrier.
Learn more about Cystic Fibrosis, here:
https://brainly.com/question/29425576
#SPJ4
5% salt on the outside of the cell vs 20% salt on the inside of the cell is a ______________ environment.
A cell that is 3% salt is placed in a container of pure water.
Answer:
If there is 5% salt on the outside of the cell and 20% salt on the inside of the cell, the environment would be considered osmotically imbalanced or osmotically stressed.
Explanation:
In general, cells are surrounded by a membrane that separates the inside of the cell from the external environment. This membrane is selectively permeable, meaning that it allows certain substances to pass through while blocking others. In the case of a cell in an osmotically imbalanced environment, the concentration of solutes (such as salt) is different inside and outside the cell, which can cause water to flow in or out of the cell in an attempt to balance the concentration of solutes on both sides of the membrane.
If the concentration of solutes is higher inside the cell than outside (as in the case you described, with 20% salt inside and 5% salt outside), this can lead to an excess of water inside the cell, which can cause the cell to swell and potentially rupture. On the other hand, if the concentration of solutes is higher outside the cell than inside, this can cause water to flow out of the cell, leading to dehydration and potentially damaging the cell.
Osmotic stress can have a range of effects on cells, depending on the severity and duration of the imbalance. In some cases, cells can adapt and survive in an osmotically imbalanced environment, but in others, the stress can be lethal.
Why research become integral part of development?
Development is dependent on research because without it, there would be nothing to develop. Therefore, research is discovery, and development is the application and improvement of that finding. Additionally, even if research is a beginning, it is also a component of development.
One simple illustration: We would not have personal computers, or really much of any form of computer, if Shockley, Bardeen, and Brattain's invention of the transistor had not been made.
One of the very first digital computers, ENIAC, had a sizable space, consumed 175 kilowatts of power, and processed 500 flops per second.
A particularly powerful laptop computer uses roughly 170 watts per hour of power and has a processing speed of about 100 billion flops per second.
Without the government-funded research at Bell Labs, there would not have been a computer revolution, or it might not have looked anything like it does now.
In other words, you can't develop anything without research.
know more about computers here
https://brainly.com/question/21080395#
#SPJ4
A proteolytic enzyme cleaves _____ bonds.
Answer:
A proteolytic enzyme cleaves peptide bonds.Explanation:
Proteolytic enzymes, also known as peptidases, are enzymes that break down proteins by hydrolyzing the peptide bonds that hold the amino acid residues of a protein together. Proteolytic enzymes are essential for many biological processes, including the digestion of proteins in the stomach and intestines, the regulation of protein levels in the body, and the breakdown of damaged or unwanted proteins.
There are many different types of proteolytic enzymes, each of which has a specific function and target in the body. Some proteolytic enzymes, for example, are specifically designed to break down proteins in the stomach and intestines, while others are involved in the regulation of protein levels in the blood or other tissues.
Proteolytic enzymes play a key role in many biological processes, and their activity is carefully regulated in the body. Imbalances or defects in proteolytic enzymes can lead to a variety of health problems, including digestive disorders, immune system disorders, and neurological disorders.
Because the bacterial cell’s DNA is not surrounded by a nuclear envelope, __________ occur(s). a. alternative splicing b. coupled transcription and translation
c. coupled splicing and tailing of the message
d. segregated transcription and translation
e. segregated splicing and tailing of the message
Since the bacterial cell’s DNA is not surrounded by a nuclear envelope, coupled transcription and translation occur in it.
Transcription is the process of formation of RNA transcript from the template strand of DNA. It takes place in the nucleus in the eukaryotic cells. The main enzyme involved in the process is called RNA polymerase. Transcription can give rise to all types of RNAs, i.e., m-RNA, r-RNA and t-RNA.
Translation is the process that begins some time after transcription. It occurs in the cytoplasm of the cell where the ribosomes are present. It is the process where proteins are formed from the m-RNA along with the use of r-RNA and t-RNA.
To know more about translation, here
brainly.com/question/16191638
#SPJ4
A strangulated hernia is one that:
A.
spontaneously reduces without any surgical intervention.
B.
can be pushed back into the body cavity to which it belongs.
C.
is reducible if surgical intervention occurs within 2 hours.
D.
loses its blood supply due to compression by local tissues.
D.
loses its blood supply due to compression by local tissues.
A serious complication hernia is one in which loses its flow of blood as a result of the surrounding tissues being compressed.
Briefing:When a portion of the swelling or bulge pushes thru the abdominal wall and is subsequently caught by the abdominal muscles, which tighten around it, the condition is known as a strangulated hernia. The blood arteries in the gut are cut off as the core muscles compress and lock around the bulge.
Why do you use the word hernia?An opening in this muscular wall, known as a hernia, enables the contents of the abdomen to project outward. Hernias can take a variety of forms, but the groin or belly region is where they happen most frequently.
To know more about Hernia visit:
https://brainly.com/question/28188326
#SPJ1
Does point mutation increase DNA?
The point mutation can lead to an increase in the length of DNA sequences depending upon the type of mutation.
A point mutation is a form of mutation in which one single nucleotide base is added, deleted, or modified in DNA or RNA, the genetic material of the organism. In the case of base substitution length of the DNA sequence remains the same because the nucleotide number remains the same after the substitution. In the case of insertions mutation overall size of the DNA increases due to an increased number of nucleotides whereas decreased in the case of deletion mutations.
Hence, the type of point mutation determines DNA length.
To know more about Nucleotide.
https://brainly.com/question/16308848
#SPJ4
How many different mutations in the CFTR gene that can cause cystic fibrosis have been identified?
The gene that encodes the CFTR protein is located on chromosome 7. Mutations in this gene lead to CF. Since the discovery of the CFTR gene in 1989, more than 2,500 mutations have been identified.
What is the function of CFTR gene?The cystic fibrosis transmembrane conductance regulator (CFTR) protein helps to maintain the balance of salt and water on many surfaces in the body, such as the surface of the lung.
This mutation is caused by the deletion of three base pairs of the CFTR gene leading to the loss of an amino acid called phenylalanine, abbreviated F, in the CFTR protein.
In cystic fibrosis, a defect (mutation) in a gene — the cystic fibrosis transmembrane conductance regulator (CFTR) gene — changes a protein that regulates the movement of salt in and out of cells.
Learn more about CFTR gene:
https://brainly.com/question/14231150
#SPJ4
What causes biological contamination?
Explanation:
Biological contamination occurs when food becomes contaminated by living organisms or the substances they produce.
What are the 3 components of homeostasis?
Adjustment of physiological systems within the body is called homeostatic regulation, which involves three parts or mechanisms: (1) the receptor, (2) the control center, and (3) the effector. The receptor receives information that something in the environment is changing.
Homeostasis, also known as homoeostasis in the United Kingdom, is the stable internal, external, and chemical conditions that are upheld by biological systems.
Receptor: Detects changes in a variable which is either the substance or process that is regulated. Typically consists of sensory nerves. Control Center. The structure that interprets input from the receptor and initiates changes through the effector.
The control center: The nervous system is important to thermoregulation. The processes of homeostasis and temperature control are centered in the hypothalamus of the advanced animal brain.
The effector :An effector is any organ or tissue that receives information from the integrating center and acts to bring about the changes needed to maintain homeostasis. One example is the kidney, which retains water if blood pressure is too low
Learn more about Homeostasis to visit this link
https://brainly.com/question/12221049
#SPJ4
what happens when the body uses its fat stores to provide tissues with energy during fasting, when there is not enough food energy?
When the body uses its fat stores to provide tissues with energy during fasting, a process called lipolysis occurs. Lipolysis is the breakdown of stored fat into fatty acids and glycerol, which can then be used by the body for energy. The fatty acids are broken down further into molecules called ketone bodies, which can be used by the body for energy.
when the body uses its fat stores to provide tissues with energy during fasting Fat cells release fatty acids into the blood by breaking down stored fat.
The activation of hormone-sensitive lipase (HSL) is the first step in the breakdown of triglycerides. During fasting, plasma levels of glucagon, epinephrine, growth hormone, and cortisol all rise, stimulating this enzyme. HSL is triggered by each of these hormones in a different way. Cyclic AMP is produced when glucagon and epinephrine bind to adenylyl cyclase on the cell membrane. Protein kinase A (PKA), which in turn activates HSL, is triggered by cyclic AMP. The glucocorticoid receptor alpha (GR-alpha) in the cell's cytosol is where cortisol binds.
Know more about lipase here: https://brainly.com/question/16496348
#SPJ4
Fish produce 1,000 grams of biomass, which represents usable chemical energy. Describe the approximate amount of energy from that biomass that will transfer from fish to polar bears.
Fish provide polar bears with 10 grams of biomass worth of energy.
What is biomass?Biomass is defined as a fuel made from organic materials; a sustainable and renewable energy source used to produce electricity or other types of power. Our ecology, economy, and energy security might all be significantly improved by using biomass as a clean, renewable energy source.
According to 10% rule.
1000x10%=100
100x10%=10.
When animals from one trophic level are consumed by organisms from the next trophic level, energy is lost when going from a lower trophic level to a higher trophic level because energy is lost as metabolic heat.
Thus, fish provide polar bears with 10 grams of biomass worth of energy.
To learn more about biomass, refer to the link below:
https://brainly.com/question/21525417
#SPJ1
What are the reproductive organs in humans which produce the gametes?
The reproductive organs in humans which produce the gametes are the ovaries in females and the testicles in males.
What are the reproductive organs in humans?The reproductive organs in humans are responsible to produce gametes such as spermatic germinal cells in the testicles of males or ovule germinal gametic cells in the ovaries of females, these gametes are produced by the process of meiosis.
Therefore, with this data, we can see that the reproductive organs in humans are the testicles in males and the ovaries in females capable of producing gametes by meiosis.
Learn more about female ovaries here:
https://brainly.com/question/12585695
#SPJ1
All animal cells are diploid except
options:
gametes.
muscle cells.
nerve cells.
germ-line cells.
somatic cells.
Except for gametes, all mammal cells are diploid.
With the exception of the gametes, almost all animal cells are diploid, however some are polyploid (three or more copies of each chromosome, often found in plants). The human genome has 46 diploid chromosomes, which is twice as many as the 23 haploid chromosomes found in human ova and sperm.
From the Greek term meaning "double," a cell or organism with two sets or copies (or homologs), typically one from each parent and so twice the number of haploids, of each somatic chromosome.
The right response is (a) gametes. In contrast to diploid cells, which have two sets of chromosomes, haploid cells only have one set.
Due to the fusing of two haploid gametes, all mammals are diploids genetically. The haploid gamete cells make sure that the amount of chromosomes or genetic material is constant from generation to generation.
Learn more about " gametes " to visit here;
https://brainly.com/question/29600905
#SPJ4
by learning to associate a squirt of water with an electric shock, sea snails demonstrate the process of
By learning to associate a squirt of water with an electric shock, sea snails demonstrate the process of classical conditioning. Merry Christmas and I hope this helped!
Which of the following is most like the formation of identical twins? A) cell cloning. B) therapeutic cloning. C) use of adult stem cells.
The right answer is (A), which states that cloning is most similar to the development of identical twins.
Cloning, which can be done via artificial or natural methods, is the act of generating unique beings with DNA that is identical or very similar. In the field of biotechnology, cloning is the process of creating organisms (copies) from cells and DNA fragments (molecular cloning). In addition to amplifying DNA segments that contain whole genes, cloning can be used to amplify any DNA sequence, including promoters, non-coding sections, and randomly fragmented DNA. It is used in a number of biological research projects and practical applications, including as mass protein production and the creation of genetic fingerprints. The process of figuring out the chromosomal location of a gene connected to an important feature, such as in positional cloning, is sometimes misleadingly referred to as "cloning." Despite the fact that a gene has been mapped to a certain chromosomal or genomic region, one cannot always extract or amplify the relevant genomic sequence.
To know more about cloning please refer: https://brainly.com/question/12483409
#SPJ4
What does each animal represent in the allegory of Animal Farm?
The pig named Snowball stands in for the intellectual revolutionary Leon Trotsky, while Old Major is either Karl Marx or Vladimir Lenin. The dogs are Stalin's secret police, and Napoleon is a representation of him. The proletariat, or working class, is symbolized by the horse Boxer.
In animal farm each animal is represented as :-
Karl Marx and Vladimir I. Lenin are examples of the first revolutionaries who pass away before things change.Napoleon: Josif Stalin, the ambitious, hushed, menacing, and power-hungry Berkshire boar.Snowball, a white boar that was smart, talkative, and a brilliant organizer, was a term used by Leon Trotsky.Squealer: Vyacheslav Molotov was a hefty porker and Napoleon's right trotter man.Pinkeye: A food tester for Napoleon. The Communist authorities.A creative pig named Minimus composes a new Animal Farm anthem after Beasts of England is outlawed. the painters of Communism.Zinovyev, Bukharin, Kameneyev, and Sokolnikov are the additional Communist leaders that Napoleon purges. They are four young pigs (Stalin).know more about animal farm here
https://brainly.com/question/29637045#
#SPJ4
What is the substance found in plasma but not in serum?
While the majority of the components are the same in both serum and plasma, serum lacks fibrinogen.
What distinguishes serum from plasma in particular?The similarities between serum and plasma end there; both are made from the liquid fraction of the blood that is left over after the cells are taken out. The liquid that is left behind after the blood has clots is called serum. When an anticoagulant is added to prevent clotting, plasma is the liquid that is left over.
What is absent from serum?White blood cells, also known as leukocytes, red blood cells, platelets, and clotting factors, are absent from serum.
To know more about fibrinogen visit:-
https://brainly.com/question/15687478
#SPJ4
40. Label the components of the cardiac conduction system AV nodeRight bundle branch Left bundleAV bundle branch Interventriculan Interatrial septum septum Interatrial branch Vagus n. SA node Purkinje fiber Reset Zoom
The components of the cardiac conduction system are enclosed in the image.
What is the cardiac conduction system?The cardiac conduction system is a set of nerve-muscular elements through which the currents of the heart will pass to generate heartbeats. It starts from the SA node which is the heart's pacemaker since it will send the electrical impulses to generate the contraction. This will send the signals to the AV node, which will then send the signal through the purkinje fibers, which will divide into two branches that will end up covering the walls of the ventricles.
So then heartbeats are generated by the uniform distribution of these components.
To learn more about cardiac conduction system visit: https://brainly.com/question/28269433
#SPJ1
FILL IN THE BLANK. genetically modifying human __________ cells may directly affect future generations.
Genetically modifying human gametic cells may directly affect future generations.
Genetics refers to the study of the genes and how are they inherited from parent to offspring. Gene is the smallest unit that carries information about a particular trait. This trait is then transferred from the parent to the offspring with the help of gamete cells.
Gametes or gametic cells are the reproductive cells of the body that carry one copy of the all the chromosomes of the organism. The gametes from the male and the female fuse together to give rise to a new organism of the same type. The male gamete is called sperm while the female is called egg or ovum.
To know more about genetics, here
brainly.com/question/8868332
#SPJ4
What other normal cellular processes other than DNA Replication are cells going through during interphase?
In order to prepare for mitosis, the cell duplicates its DNA during interphase. The interphase is the cell's "everyday life" or metabolic phase, during which the cell acquires nutrients, metabolises them, develops, reads its DNA, and performs other "typical" cell operations.
The G1, S, and G2 phases are included in the interphase, which is the part of the cell cycle where no changes can be seen under a microscope. The cell multiplies (G1), duplicates (S), and gets ready for mitosis during interphase (G2).
After cytokinesis has separated the cell membrane and cells have finished dividing their chromosomes, the two newly formed cells enter Gap 1 or G1, the first phase of interphase. The cell continues to expand and carry out its typical tasks throughout this period.
To know more about DNA, visit:
brainly.com/question/264225
#SPJ1
pioneer organisms modify their environment, establishing conditions under which more advanced organisms can live.____
correct answer :- True
Because, for instance, a pioneer organism improves the soil, which benefits the growth of other organisms.
Pioneer species are those found in newly formed environments in primary succession, and via their interactions, they help to develop a basic beginning biological community. As new species enter this society, it becomes more complicated. Secondary succession, or the restoration of an established biological community after a disturbance sets the community's progress back, is distinguished from primary succession.
know more about pioneer organism here
https://brainly.com/question/23790784#
#SPJ4
Know The difference between a 1n and 2n cell
In 1n cell chromosome number is 23 and in 2n cell chromosome number is 46.
An individual set of chromosomes, or haploid, is present in each cell. Haploid refers to the number of chromosomes in gametes, which are also known as egg or sperm cells.Human gametes are haploid cells with 23 chromosomes, one of each pair found in diplod cells, and they are made up entirely with chromosomes that are not found in other haploid cells.
When an organism's cells contain two full sets of chromosomes, with one chromosome from each parent present in each pair, the organism is said to be diploid.Humans contain 23 pairs of chromosomes in most of their cells because they are diploid.
The number of chromosomes in somatic (body) cells of sexually reproducing animals is normally diploid, which is twice as many as the haploid (1n) amount found in the gametes. During meiosis, the haploid number is generated.
Learn more about chromosome from:
https://brainly.com/question/1596925
#SPJ4
What you were told about the reproduction of snails?
Snails have both female and male reproductive cells ( as they are hermaphrodite).
What can you say about the reproduction of snails?The majority of these terrestrial gastropod (snails) mollusks are hermaphrodites, which is the first thing you should be aware of. Any organism that possesses both male and female reproductive organs and is able to generate both eggs and spermatozoa is referred to as a hermaphrodite. The snails appear to be both male and female at the same time.
However, there are several exceptions. The Pomatiid family of snails differs from its members in that each snail belongs to either a male or a female gender depending on the presence or absence of reproductive organs.
To know more about snails, refer
https://brainly.com/question/2737411
#SPJ4
snapdragons occur in nature as either green or yellow plants. a green snapdragon is homozygous and has the genotype cc. a yellow snapdragon is heterozygous and has the genotype cc. suppose that a gardener crosses two yellow snapdragons, and one-third of the offspring are green and two-thirds of the offspring are yellow. what type of allele could be responsible for the 2:1 offspring ratio seen when two yellow snapdragons are crossed?
The allele responsible foe 2:1 ratio when two yellow snapdragons are crossed is Lethal allele.
Edwin Baur began working with the snapdragon plant Antirrhinum in 1907 and identified the condition aurea, in which plants possessed golden rather than green leaves.
Baur discovered a 2:1 ratio of green seedlings to yellow seedlings when two aurea snapdragon plants were crossed. Homozygous aurea plants did not grow normal chlorophyll and perished at the embryonic stage or when the plant seedlings were two to three days old.
In other words, the homozygous aurea plants, like Cuénot's homozygous mice, were unable to properly grow, and as a result, an entire class of progeny died.
Because they changed Mendelian inheritance ratios, Cuénot and Baur found the first recessive deadly genes. Recessive lethal genes can code for either dominant or recessive features, but they do not induce death unless two copies of the deadly allele are present in an organism.
Cystic fibrosis, sickle cell anemia, and achondroplasia are examples of human illnesses caused by recessive lethal genes. Achondroplasia is a dwarfism-causing autosomal dominant bone condition. While inheriting one achondroplasia allele can produce the condition, inheriting two recessive lethal alleles is deadly.
learn more about lethal genes at https://brainly.com/question/1063877
#SPJ4