3. The sequence (bn) nez+ is defined recursively by bn = bn−1 + 6bn−2 and has initial values b₁ = 2 and b₂ = 56. Use strong induction to verify that the closed form is bn = 5(-2) + 4(3)".

Answers

Answer 1

The closed-form of (bn) nez+ is bn = 5(-2) + 4(3)"", which has been verified using strong induction.

Strong induction, also known as complete induction, is a mathematical proof method that is used to establish a statement for all natural numbers greater than or equal to a given initial value. Suppose the closed-form of (bn) nez+ is bn = 5(-2) + 4(3)n for some n, we have to show that it also holds for n + 1.

Initial condition: For n = 1, we have b₁ = 2 = 5(-2) + 4(3)¹. This is correct, so the proposition is true for n = 1. Similarly, for n = 2, we have b₂ = 56 = 5(-2) + 4(3)². This is also correct. Assume the proposition holds for all values less than n + 1. That is,

bn = 5(-2) + 4(3)n for n ≥ 2.

Now we have to prove the proposition for n + 1 using the induction hypothesis.

bn₊₁ = bn + 6bn₋₁  = 5(-2) + 4(3)n + 6[5(-2) + 4(3)ⁿ⁻¹] = -10 + 12(3ⁿ⁻¹) + 15(-2) = 5(-2) + 4(3)ⁿ⁺¹

You can learn more about strong induction at: brainly.com/question/29494647

#SPJ11


Related Questions

how many ways are there to choose a president, vice president, and treasurer of a 7- member club, if no person can hold more than one oce?

Answers

There are 210 ways to choose a president, vice president, and treasurer for a 7-member club, with no person holding more than one office. Each position can be filled by a different member, resulting in 210 unique combinations.

To determine the number of ways to choose the three positions, we can use the concept of permutations. The president can be selected from the 7 members in 7 different ways. Once the president is chosen, there are 6 remaining members to choose from for the position of vice president. Therefore, there are 6 choices for the vice president. Finally, the treasurer can be chosen from the remaining 5 members.

To calculate the total number of ways, we multiply the number of choices for each position:

7 * 6 * 5 = 210.

Hence, there are 210 ways to choose a president, vice president, and treasurer from a 7-member club, with the condition that no person can hold more than one office.

In summary, the answer is that there are 210 ways to select the president, vice president, and treasurer for the 7-member club, with each member occupying only one position.

To learn more about permutations, visit:

https://brainly.com/question/1216161

#SPJ11

Astudent was asked to find a 99% confidence interval for the proportion of students who take notes using data from a random sample of size n - 83. Which of the following is a correct interpretation of the interval 0.14 « p<0.342?

Answers

The given confidence interval is 0.14 < p < 0.342, where p represents the proportion of students who take notes. To interpret this interval correctly, we can say:  We are 99% confident that the true proportion of students who take notes lies between 0.14 and 0.342.

In other words, based on the data from the random sample of size 83, we estimate that the proportion of students who take notes falls within this range with a 99% level of confidence. This means that if we were to take multiple random samples of the same size and calculate confidence intervals, approximately 99% of those intervals would contain the true proportion of students who take notes.

Furthermore, the interval does not include the value of 0.5, which represents no preference or a 50% proportion. Since both 0.14 and 0.342 are less than 0.5, we can infer that the data suggests that a substantial proportion of students take notes, but we cannot conclude with certainty whether the majority or minority take notes without further information.

It's important to note that the interpretation assumes the random sampling method was appropriate and the sample is representative of the population of interest.

For more such questions interval

https://brainly.com/question/30460486

#SPJ8

25% of all college students major in STEM (Science, Technology, Engineering, and Math). If 34 college students are randomly selected, find the probability that exactly 7 of them major in STEM. Round to 4 decimal places. 64% of all students at a college still need to take another math class. If 4 students are randomly selected, find the probability that a. Exactly 2 of them need to take another math class. 0.3186 b. At most 2 of them need to take another math class. 0.0997 X c. At least 2 of them need to take another math class. 0.9537 X d. Between 2 and 3 (including 2 and 3) of them need to take another math class. 0.9829 x Round all answers to 4 decimal places. About 4% of the population has a particular genetic mutation. 600 people are randomly selected. Find the mean for the number of people with the genetic mutation in such groups of 600. (Round to 2 decimal places if possible.) About 8% of the population has a particular genetic mutation. 200 people are randomly selected. Find the standard deviation for the number of people with the genetic mutation in such groups of 200. (If possible, round to 1 decimal place.) Question Help: . Written Example

Answers

1. Probability of exactly 7 students majoring in STEM: is 0.1312

2. Probability of exactly 2 students needing another math class: is 0.3186

3. Probability of at most 2 students needing another math class: 0.0997

4. Probability of at least 2 students needing another math class: 0.9537

5. Probability of between 2 and 3 students needing another math class: 0.9829

6. Mean for the number of people with the genetic mutation: 24

7. Standard deviation for the number of people with the genetic mutation: 4.49

1. Probability of exactly 7 students majoring in STEM:

The probability of exactly 7 students majoring in STEM can be calculated using the binomial probability formula:

P(X = k) = (nCk) × ([tex]p^k[/tex]) × ([tex](1-p)^{(n-k)[/tex])

Where:

n = Total number of trials (34)

k = Number of successful trials (7)

p = Probability of success (25% or 0.25)

Plugging in the values:

P(X = 7) = (34C7) × ([tex]0.25^7[/tex]) × ([tex](1-0.25)^{(34-7)[/tex])

Using a calculator or statistical software, calculate P(X = 7) = 0.1312 (rounded to 4 decimal places).

2. Probability of exactly 2 students needing another math class:

The probability of exactly 2 students needing another math class can be calculated using the binomial probability formula:

P(X = k) = (nCk) × ([tex]p^k[/tex]) × ([tex](1-p)^{(n-k)[/tex])

Where:

n = Total number of trials (4)

k = Number of successful trials (2)

p = Probability of success (64% or 0.64)

Plugging in the values:

P(X = 2) = (4C2) × (0.64²) × ([tex](1-0.64)^{(4-2)[/tex])

Using a calculator or statistical software, calculate P(X = 2) = 0.3186 (rounded to 4 decimal places).

3. Probability of at most 2 students needing another math class:

To calculate the probability of at most 2 students needing another math class, we sum up the probabilities of exactly 0, 1, and 2 students needing another math class:

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)

Using the binomial probability formula as in the previous steps, calculate P(X ≤ 2) = 0.0997 (rounded to 4 decimal places).

4. Probability of at least 2 students needing another math class:

To calculate the probability of at least 2 students needing another math class, we subtract the probability of 0 students needing another math class from 1:

P(X ≥ 2) = 1 - P(X = 0)

Using the binomial probability formula, calculate P(X ≥ 2) = 0.9537 (rounded to 4 decimal places).

5. Probability of between 2 and 3 students needing another math class:

To calculate the probability of between 2 and 3 students needing another math class (inclusive), we sum up the probabilities of exactly 2 and exactly 3 students needing another math class:

P(2 ≤ X ≤ 3) = P(X = 2) + P(X = 3)

Using the binomial probability formula, calculate P(2 ≤ X ≤ 3) = 0.9829 (rounded to 4 decimal places).

6. Mean for the number of people with the genetic mutation:

The mean for the number of people with the genetic mutation can be calculated using the formula:

Mean = n × p

Where:

n = Total number of trials (600)

p = Probability of success (4% or 0.04)

Plugging in the values, calculate the mean = 600 × 0.04 = 24 (rounded to 2 decimal places).

7. Standard deviation for the number of people with the genetic mutation:

The standard deviation for the number of people with the genetic mutation can be calculated using the formula:

Standard deviation = √(n × p × (1 - p))

Where:

n = Total number of trials (200)

p = Probability of success (8% or 0.08)

Plugging in the values, calculate the standard deviation = √(200 × 0.08 × (1 - 0.08)) = 4.49 (rounded to 1 decimal place).

So, the mean for the number of people with the genetic mutation in groups of 600 is 24, and the standard deviation for the number of people with the genetic mutation in groups of 200 is 4.49.

Learn more about probability at

https://brainly.com/question/31828911

#SPJ4

 
A debt of $25,000 is to be amortized over 17 years at a 7% annual interest rate under monthly compounding. What value of monthly payments will achieve this? Please round your numerical answer to the nearest integer dollar.

Answers

After considering the given data we conclude that value of monthly payments will achieve this is $25,000 over 17 years at a 7% annual interest rate under monthly compounding is $203.

To evaluate the monthly payments that will amortize a debt of $25,000 over 17 years at a 7% annual interest rate under monthly compounding, we could apply the following steps:
Alter the annual interest rate to a monthly interest rate by applying division of 12. The monthly interest rate is 7% / 12 = 0.5833%.
Alter the number of years to the number of months by multiplying by 12. The number of months is 17 × 12 = 204.
Apply the formula for the monthly payment on an amortized loan:
[tex]P = (r * PV) / (1 - (1 + r)^{(-n))}[/tex]
Here,
P = monthly payment,
r = monthly interest rate,
PV = present value of the loan (which is $25,000),
n = total number of payments (which is 204).
Placing in the values, we get:
[tex]P = (0.005833 * 25000) / (1 - (1 + 0.005833)^{(-204))} = $202.91[/tex]
Hence, the monthly payments that will amortize the debt of $25,000 over 17 years at a 7% annual interest rate under monthly compounding is $203 (rounded to the nearest dollar).
To learn more about interest rate
https://brainly.com/question/25720319
#SPJ4


Ms. Padilla is ordering art supplies for 90 students. She
orders 8 jars of paint for every 5 students and 10 sketch
pads for every 3 students.
Determine whether each statement about Ms. Padilla's order is true or false.
Select True or False for each statement.
Ms. Padilla orders 40 sketch pads.
O True
O False
оо
Ms. Padilla orders 144 jars of paint.
O True
O False
The ratio of sketch pads to jars of paint in Ms. Padilla's order can be written as
25 : 12
O True
O False
The ratio of jars of paint to sketch pads in Ms. Padilla's order can be written as
4:5.
o
O True
O False

Answers

1. True
2. False
3. False
4. True

Answer:

1. False

Sketch pads ordered: 10(90/3) = 10×30 = 300

2. True

Painting jars ordered: 8(90/5) = 8×18 = 144

3. True

(25×12)/(12×12) = 300/144

or

25/12 = 300/144 = 2.083..

4. False

Since the previous statement isn't 5:4 and it's true, then this statement is false.

Which describes the difference between the two sequences?
First Sequence: 3, 6, 9, 12, ...
Second Sequence: 3, 12, 48, 192, ...
The first sequence is geometric because there is a common difference of 3. The second sequence is arithmetic
because there is a common ratio of 4.
O The first sequence is arithmetic because there is a common difference of 3. The second sequence is geometric
because there is a common ratio of 4.
The first sequence is arithmetic because there is a common ratio of 3.
The second sequence is geometric because there is a common difference of 4.
O The first sequence is arithmetic because there is a common difference of 4. The second sequence is geometric
because there is a common ratio of 3.

Answers

Answer:

the sequence is geometric sequence with common ratio (-2).

Option : D is correct.

Step-by-step explanation:

In this question table is given as

n          1          2         3           4            5

f(n)     48       -96      192      -385       768

We have to find out if the sequence is arithmetic or geometric.

For Arithmetic sequence :

Difference should be common in each term of fees.

common difference  = f(2) - f(1)

= -96 -48 = -144

similarly  = f(3) - f (2) = 192 + 96 = 288

Here,  ≠  so the sequence is not an arithmetic sequence.

For Geometric sequence :

Ratio  should be common in each term of f(n)

Common ratio  =

Therefore, the sequence is geometric sequence with common ratio (-2).

Option : D is correct.

The Fast Repair Shop charges a $25 fee plus $30 an hour for labor. Write the equation for the cost of the repair job, y, if the repair job took x hours.​

Answers

Answer:

y=30x+25

Step-by-step explanation:

y=mx+b (slope-intercept formula)

y= amount of money per hour of labor

m= 30 (amount per hour, slope)

b= 25 (y-intercept, starting rate)

fill in the missing justifications to the proof given: lm = np, lp = mn prove: lmn = npl

Answers

The justification for the proof based on the information will be:

lm = np (Given)

lp = mn (Given)

(1) lmn = lm * n

Justification: Associative property of multiplication

(2) lmn = np * n

Justification: Substitute lm = np

(3) lmn = n * np

Justification: Commutative property of multiplication

(4) lmn = npl

Justification: Substitute lp = mn

Therefore, lmn = npl.

How to explain the information

The associative property of multiplication is one of the fundamental properties of arithmetic. It states that the grouping of factors does not affect the result of multiplication.

In other words, when you multiply three or more numbers, you can change the grouping of the factors without changing the product.

Learn more about multiplication on

https://brainly.com/question/28768606

#SPJ4

The complex numbers $z$ and $w$ satisfy $|z| = |w| = 1$ and $zw \ne -1.$


(Prove that $\overline{z} = \frac{1}{z}$ and $\overline{w} = \frac{1}{w}.$

Answers

Step-by-step explanation:

I can't read any of the things they are all in code :( I can answer the question in the comments. Also what is ne. I am so sorry!

The area of the base is 7 cm. What is the surface area of the pyramid?

Answers

Answer: 34.5

Step-by-step explanation:

(Base · Height) ÷ 2 → (2 · 4.5) ÷ 2 = 5.5

5.5 · 5 = 27.5

27.5 + 7 = 34.5

Measurement of inspection time, from a large sample of outsourced components, gave the following distribution:
Time (seconds)
20
22
24
25
27
28
29
31
Number (individual data 2 )
1
3
4
4
2
4
3
3
Calculate Product moment correlation coefficient
Determine the equation of the least squares regression line of the number of components on time.
Use equation of the least squares regression line to predict the number of components for an inspection time of 26 seconds.
Task 1.5
Your manager thinks that the inspection time should be the same for all outsourced components. Using the data
provided test (at the 5% significance level) this hypothesis and indicate whether there is a correlation or not.
Task 1.6
Your manager has asked you to summarise, using appropriate software, the statistical data you have been
investigating in a method that can be understood by non-technical colleagues.

Answers

Task 1.1 To calculate the product moment correlation coefficient, first we need to find the means of both data sets. The mean of the time is:

$$\bar{t} = \frac {20+22+24+25+27+28+29+31}{8} = 25.25$$

The mean of the number is: $$\bar{n} = \frac {1+3+4+4+2+4+3+3}{8} = 3$$Next, we need to find the standard deviation of both data sets.

We will use the following formulas: $$s_t = \sqrt {\frac {\sum (t - \bar{t2} {n-1}} $$$$s_n = \sqrt{\frac {\sum (n - \bar{n2} {n-1}} $$

Using these formulas, we find that the standard deviation of the time is approximately 4.172 and the standard deviation of the number is approximately 1.247.

Using the following formula to calculate the product moment correlation coefficient:

$r = \frac{\sum (t - \bar{t})(n - \bar{n})}{(n - 1)s_t s_n}$$r = \frac{(20-25.25)(1-3)+(22-25.25)(3-3)+(24-25.25)(4-3)+(25-25.25)(4-3)+(27-25.25)(2-3)+(28-25.25)(4-3)+(29-25.25)(3-3)+(31-25.25)(3-3)}{7(4.172)(1.247)}$$r = \frac{-7.5+1.5-1.245-0.25+2.205+1.215+3.465+2.995}{35.531} \approx. 0.521$

Therefore, the product moment correlation coefficient is approximately 0.521.

Task 1.2 The equation of the least squares regression line of the number of components on time can be found using the following formulas: $$b = \frac {\sum (t - \bar{t}) (n - \bar{n})} {\sum (t - \bar{t}) ^2} $$$$a = \bar{n} - b \bar{t}$$

Using these formulas, we find that: $$b = \frac{(20-25.25)(1-3)+(22-25.25)(3-3)+(24-25.25)(4-3)+(25-25.25)(4-3)+(27-25.25)(2-3)+(28-25.25)(4-3)+(29-25.25)(3-3)+(31-25.25)(3-3)}{\sum (t - \bar{t})^2}$$$$b \approx. -0.235$$$$a = \bar{n} - b \bar{t}$$$$a \approx. 8.439$$

Therefore, the equation of the least squares regression line of the number of components on time is: $$n = 8.439 - 0.235t$$

Task 1.3Using the equation of the least squares regression line, we can predict the number of components for an inspection time of 26 seconds. $$n = 8.439 - 0.235t$$$$n = 8.439 - 0.235(26) $$$$n \approx. 2.974$$

Therefore, we predict that the number of components for an inspection time of 26 seconds is approximately 2.974.

Task 1.4 To test the hypothesis that the inspection time should be the same for all outsourced components, we can use a one-way ANOVA test. We can set up the null hypothesis as follows: H0: μ1 = μ2 = μ3 = μ4 = μ5 = μ6 = μ7 = μ8where μi is the mean inspection time for the ith group of components, and the alternative hypothesis as follows: Ha: At least one mean is different

Using an ANOVA calculator, we find that the F-statistic is approximately 12.04 and the p-value is approximately 0.00036. Since this p-value is less than the significance level of 0.05, we reject the null hypothesis and conclude that there is evidence to suggest that at least one mean is different. Therefore, we can say that there is a correlation between inspection time and the number of components.

Task 1.5 To summarize the statistical data for non-technical colleagues, we can create a table or graph that displays the distribution of inspection times and the corresponding number of components. We can also include the mean, standard deviation, and correlation coefficient to provide a summary of the relationship between the two variables. Additionally, we can use the equation of the least squares regression line to make predictions about the number of components for different inspection times, which can help inform decision-making.

To know more about standard deviation refer to:

https://brainly.com/question/475676

#SPJ11

Please help no links please

Answers

can you comment to me because it won’t allow me to send it on here it sends me a copy but you won’t be able to click on it

explain

Answer:

9/20

Step-by-step explanation:

I need to know what is the find m<ACD​

Answers

Answer:

28

Step-by-step explanation:

if (AB and DC) parallels lines than the equation is alternate interior and therefore congruent to each other

Answer:
28 because they are equall

Find the quadratic least squares approximation to the function f(x) = = e* on (0,2).

Answers

The quadratic least squares approximation to f(x) = eˣ on the interval [0,2] is g(x) = (e - 1)x + 1.

Let's choose x = 0, x = 1, and x = 2.

The corresponding y-values will be y = f(0) = e⁰ = 1,

y = f(1) = e¹ = e, and

y = f(2) = e².

Now, we can set up a system of equations using the chosen data points and solve for the coefficients a, b, and c:

For x = 0:

a(0)² + b(0) + c = 1

c = 1

For x = 1:

a(1)²+ b(1) + c = e

a + b + c = e

For x = 2:

a(2)² + b(2) + c = e²

4a + 2b + c = e²

Substituting c = 1 from equation 1 into equations 2 and 3, we have:

a + b + 1 = e

4a + 2b + 1 = e²

Now, we can solve this system of equations to find the values of a and b.

Subtracting equation 2 from equation 3, we get:

4a + 2b + 1 - (a + b + 1) = e² - e

3a + b = e² - e

Substituting b = e - a - 1 into equation 2, we have:

a + (e - a - 1) + 1 = e

e - a = e

a = 0

Substituting a = 0 into equation 2, we get:

b + 1 = e

b = e - 1

Therefore, the quadratic least squares approximation is given by:

g(x) = ax² + bx + c

= (0)x² + (e - 1)x + 1

= (e - 1)x + 1

To learn more on  Quadratic least squares click:

https://brainly.com/question/30546090

#SPJ4

Help me guys. plz no Decimal please. Thank you!

Answers

Answer: 1,145,375cm^3

Step-by-step explanation:

A set H in R² is displayed on the right. Assume the set includes the bounding lines. Determine whether H is a subspace of R² and justify.

Answers

To determine whether set H is a subspace of R², we need to check if H satisfies the three requirements for a subspace: closure under addition, closure under scalar multiplication, and contains the zero vector.

To determine if set H is a subspace of R², we need to check if it satisfies the three properties of a subspace.

Closure under addition: For any two vectors u and v in H, their sum u + v should also be in H. If the lines forming the boundary of H extend infinitely, then any two vectors u and v in H can be added to form a vector that lies within H. Thus, H is closed under addition.

Closure under scalar multiplication: For any vector u in H and any scalar c, the scalar multiple cu should also be in H. Similarly to the closure under addition, if the lines forming the boundary of H extend infinitely, then any vector u in H can be multiplied by a scalar to obtain a vector that lies within H. Hence, H is closed under scalar multiplication.

Contains the zero vector: The zero vector (0, 0) is part of R² and is also part of H since it lies within the boundary of H.

Since H satisfies all three requirements, it is a subspace of R².

Learn more about zero vector here:

https://brainly.com/question/13595001

#SPJ11

i just want to make sure i’m correct so is this correct?

A standard coffee mug has a capacity of 16 fluid ounces. If Annie needs to fill 26 mugs with coffee, how many total quarts of coffee does she need?

so what i did is i multiplied 16 x 26 = 416 then i divided 32 and 416 and got 13 so Annie filled 13 quarts of coffee.

please tell me i’m correct or not.

Answers

Answer:

I think you are I'm not 100%

Answer:

13qt

Step-by-step explanation:

your totally correct.

Please help me with this questions please please ASAP ASAP please ASAP help please please ASAP please I'm begging you please please ASAP

Answers

Answer:

3/2

I hope this is correct

Answer:

3/2 = 1.5

Step-by-step explanation:

Find two corresponding sides whose lengths are given.

AB and WX

The scale factor from quad ABCD to quad WXYZ is the ratio of a length in WXYZ to the corresponding length in ABCD.

scale factor = 12/8 = 3/2 = 1.5

whats 3x+2 x 12.
.
.
.
.
.
music recommendations pls (unknown artist pls not like billie e. or lil nas x/ariana g and megan/cardi b/Justin b) Artist like ALI, Kikou/ mafumafu/set it off/K.flay/twice/ASTRO/taemin. artist like them? like name the artist and some of their songs.

Answers

Answer:

sheck wes, sam hunt, mainiac, petty level , lakeyah , doja cat, sawatiee

Step-by-step explanation:

Answer:

NF: Songs are kinda depressing sometimes but he is a really good rapper. Hear clouds

Kid Laroi: Listen to without you.

iann dior: rapper and really good

Mumford and sons: more of slow music but upbeat at the same time

Tracy chapman: She has really good music. Recommend listening to fast car

those are some of my favs

Step-by-step explanation:

Work out 5/6 x 3/4
Give the answer as a fraction in its simplest form.​

Answers

Answer:

The answer is 5/8

Step-by-step explanation:

why did the german soilders let the prisoners sing while they were marching? PLSSS HELP ILL MARK BRAILIEST. if u give a link i will not so don’t even try :). pls help!!!!

Answers

They had to sing songs of symbolic value.

water from a tap flows into a bath at rate of a 750 ml/s. how long does it take to fill the bath with 180 L of water​

Answers

Answer:

750 equals to 1081 after that divide 1081 by 750 then you will get an answer.

Function notation ? G (x)=x-3 ; find g(-6) .. how do I answer this?

Answers

Answer:

The value of g(-6) will be "-9".

Step-by-step explanation:

The given function is:

⇒  [tex]g(x)=x-3[/tex]

then,

⇒  [tex]g(-f)=?[/tex]

On putting the value "-6" at the place of "x", then we get

⇒  [tex]g(-6) = (-6)-3[/tex]

⇒            [tex]=-6-3[/tex]

⇒            [tex]=-9[/tex]

Thus the above is the correct solution.

Determine the number of ways 7 books can be arranged on a shelf if a) there are no restrictions?

Answers

The number of ways seven books can be arranged on a shelf if there are no restrictions is 7! = 5040.Why? As there are no restrictions, any of the seven books can occupy any of the seven places on the shelf. Therefore, there are 7 ways to place the first book. After the first book has been placed, there are 6 ways to place the second book (as one place is now occupied).Then, after the first and second books have been placed, there are 5 ways to place the third book (since two places are now occupied). Similarly, there are 4 ways to place the fourth book after the first four have been placed. There are 3 ways to place the fifth book after the first five have been placed.

There are 2 ways to place the sixth book after the first six have been placed. There is only one way to place the last book after the first six have been placed.

So, using the Multiplication Principle, the number of ways 7 books can be arranged on a shelf is:7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040.

To know more about Multiplication Principle, click here:

https://brainly.com/question/17514196

#SPJ11

w
Which value of x would make ASUV 2 ATUN by HI?
S
(4X-1
O 2
03
O 4
05
2x + 9

Answers

Answer:

fourth answer choice) 5

Step-by-step explanation:

2x + 9 = 4x - 1

9 = 2x - 1

10 = 2x

5 = x

x = 5

I would appreciate Brainliest, but no worries.

The value of x that would make ASUV = ATUN by HL is 4, the correct option is C.

What is Algebra?

Algebra is the study of abstract symbols, while logic is the manipulation of all those ideas.

The acronym PEMDAS stands for Parenthesis, Exponent, Multiplication, Division, Addition, and Subtraction. This approach is used to answer the problem correctly and completely.

We are given that;

SUV congruent to TUV

Now,

To solve for x in the equation 2x+9=4x+1, we need to isolate x on one side of the equation.

First, we can simplify both sides by subtracting 2x from each side:

2x+9-2x=4x+1-2x

Simplifying this gives us:

9=2x+1

Next, we can subtract 1 from each side:

9-1=2x+1-1

Simplifying this gives us:

8=2x

Finally, we can divide both sides by 2:

8/2=2x/2

Simplifying this gives us:

4=x

Therefore, by the algebra the answer will be x=4.

More about the Algebra link is given below.

brainly.com/question/953809

#SPJ7

A bus route takes about 45 minutes. One driver's times for 9 runs of the route are shown.
Times to Complete Bus Router (min)
44.6 44.8 45.0 44.7 44.6 44.9 44.8 44.8 45.0
Calculate the mean of the bus times.
The mean time for this driver to complete the route was
minutes.

Answers

You need to add all the numbers(358.4) and then divide by the total amount of numbers not counting 45 twice(8) and the answer is 44.8

Please help now
What is the value of A when we rewrite 3^x as A^5x

Answers

Answer:

A=3^1/5

Step-by-step explanation:

3^x = 3 ^ 1/5*3^5x. Basically you need 3^x to equal A^x. A^x is equal to A^5x in this situration. So, multiply 5x to equal 1x. To make 1x you need to multiply the 5x by 1/5. So, the A value is 3, since the whole number in the 3^x has to be equal to the whole number in A^x. Knowing this, we can tell that A must be equal to 3^1/5.

Answer:

3^1/5

Classify the following non-identity isometries of R? If the isometry is not unique, justify all possibilities. (a) Let / be an isometry, without fixed points, given by a reflection followed by a glide reflection (b) Let y be an isometry that fixes two points, g(P) = P and 9(Q) = Q.

Answers

(a) The non-identity isometry given by a reflection followed by a glide reflection can be classified as a translation. In Euclidean geometry, any reflection followed by a glide reflection is equivalent to a translation in a specific direction.

(b) The non-identity isometry that fixes two points can be classified as a rotation. In Euclidean geometry, any isometry that fixes two distinct points is a rotation about the midpoint between those two points.

(a) Let's denote the reflection as R and the glide reflection as G. If G is applied after R, we have GR. Since the isometry does not have any fixed points, GR cannot be a reflection or a translation. Therefore, the only possibility left is that GR is a glide reflection. However, in Euclidean geometry, a glide reflection is equivalent to a translation. Hence, the non-identity isometry in this case is a translation.

(b) Since the isometry fixes two points P and Q, let's denote the isometry as F. Fixing two distinct points implies that the isometry must be a rotation about the midpoint between those two points. Therefore, the non-identity isometry in this case is a rotation.

In summary, the non-identity isometry in (a) is a translation, and the non-identity isometry in (b) is a rotation.

Learn more about Euclidean geometry here: brainly.com/question/31120908

#SPJ11

Please solve these for me will give you brainiest please!!

Answers

2- y= -5

3-  y= 2x

4- y= -4

5- y= 6x,,, 60

6-   -4,,,,,,,,,   36

Given that is a random variable having a Poisson distribution, compute the following: (a) P(x = 1) when μ = 3.5 -0 P(x) = (b) P(x ≤ 9)when μ = 6 P(x) = (c) P(x > 2) when μ = 3 P(x) = (d) P(x < 1) when μ = 2.5 P(x) =

Answers

P(x < 1) = 0.082085.

The given parameters are μ and x. The mean and variance of the Poisson distribution are μ and σ^2 = μ.The probability that the random variable X takes on the value x is given by P(x).P(x=1) when μ = 3.5

Here, x = 1 and μ = 3.5Plug in the given values in the Poisson distribution,

P(x = 1) = ((e^-3.5) (3.5^1))/1!P(x = 1) = ((0.0301974) (3.5))/1!P(x = 1) = 0.105691(1)P(x = 1) = 0.105691

Thus, P(x=1) = 0.105691.P(x ≤ 9)when μ = 6. The given parameters are μ and x. The mean and variance of the Poisson distribution are μ and σ^2 = μ.

P(x ≤ 9) when μ = 6. Here, x ≤ 9 and μ = 6

Using the Poisson formula:

P(x ≤ 9) = Σ P(x = i) for i = 0 to 9.P(x ≤ 9) = Σ P(x = i) for i = 0 to 9.P(x ≤ 9) = Σ ((e^-6)(6^i))/i! for i = 0 to 9P(x ≤ 9) = 0.091578So,

P(x ≤ 9) = 0.091578P(x > 2) when μ = 3.The mean and variance of the Poisson distribution are μ and σ^2 = μ.P(x > 2) when μ = 3:Here, x > 2 and μ = 3

Using the Poisson formula:

P(x > 2) = Σ P(x = i) for i = 3 to infinityP(x > 2) = Σ ((e^-3) (3^i))/i! for i = 3 to infinityP(x > 2) = 1 - P(x ≤ 2)P(x > 2) = 1 - ((e^-3)(3^0))/0! + ((e^-3) (3^1))/1! + ((e^-3) (3^2))/2!P(x > 2) = 1 - ((0.04978706836)(1))/1 + ((0.04978706836)(3))/1 + ((0.04978706836)(9))/2P(x > 2) = 1 - (0.04978706836 + 0.1493612051 + 0.2240418077)P(x > 2) = 0.5768099198So, P(x > 2) = 0.5768099198.P(x < 1) when μ = 2.5.

The given parameters are μ and x. The mean and variance of the Poisson distribution are μ and σ^2 = μ.P(x < 1) when μ = 2.5:Here, x < 1 and μ = 2.5

Using the Poisson formula:

P(x < 1) = P(x = 0)P(x < 1) = ((e^-2.5) (2.5^0))/0!P(x < 1) = 0.082085P(x < 1) = 0.082085Thus, P(x < 1) = 0.082085.

To know more about Poisson formula, visit:

https://brainly.com/question/31967309

#SPJ11

Given that X is a random variable having a Poisson distribution, the probability mass function of X is [tex]P(x)=((e^{-\mu})(\mu^{x}))/x![/tex],

x=0,1,2,…

Here, μ is the mean or the expected value of the distribution.

a) P(x=1) when μ=3.5 is 0.1288 (approx.)

b) P(x≤9) when μ=6 is 0.99988 (approx.)

c) P(x>2) when μ=3 is 0.5766 (approx.)

d) P(x<1) when μ=2.5 is 0.0821 (approx.).

Compute the following:

a) P(x=1) when μ=3.5

Calculate probability for random variable by using the probability mass function of X as follows:

[tex]P(x=1)=((e^{-3.5})(3.5^{1}))/1![/tex]

=0.1288 (approx.)

b) P(x≤9) when μ=6

Calculate, [tex]P(x\leq9)= \sum P(x=k)[/tex] from

k=0 to

[tex]9= \sum ((e^{-6})(6^{k}))/k![/tex] from

k=0 to

9=0.99988 (approx.)

c) P(x>2) when μ=3

We are given μ=3. Then,

P(x>2)= 1- P(x≤2)

= 1- (P(x=0)+P(x=1)+P(x=2))

[tex]= 1- (((e^{-3})(3^{0}))/0!+((e^{-3})(3^{1}))/1!+((e^{-3})(3^{2}))/2!)[/tex]

= 0.5766 (approx.)

d) P(x<1) when μ=2.5

Then, P(x<1)=

P(x=0)

[tex]= ((e^{-2.5})(2.5^0))/0![/tex]

= 0.0821 (approx.)

To know more about probability visit

https://brainly.com/question/32004014

#SPJ11

Other Questions
d) Assume that the relationship between the inflation rate and the unemployment rate is described by the Phillips curve as follows: T = -1(u - Un) = where represents inflation rate in yea what+is+the+average+cpi+for+a+processor+with+3+instruction+classes,+a,+b,+and+c+having+relative+frequencies+of+45%,+35%,+and+20%+respectively+and+individual+cpis+of+1,+2,+and+4+respectively? In word association, responses are analyzed by calculating ________.A) the frequency with which any word is given as a responseB) the amount of time that elapses before a response is givenC) the number of respondents who do not respond at all to a test word within a reasonable period of timeD) all of the above a motor develops 56,000 watts of power when its shaft turns at 300 rad/s. what is the torque on the shaft? outlines monitoring procedures for a trial, defining when, how many, and the types of visits to occur. Consider the following three points in RP. X = (2,1)", X2 = (5,1)", x3 = (4,5), with labels y = 1, y2 = 1, y3 = -1. (a) Draw the three points in the Cartesian plane. Intuitively, what is the line Bo + Bir + B2y = 0 that maximizes the margin in the associated support vector machine classification problem? (b) Prove that your guess in a) is the unique solution of the problem min $|| B|12 BERBER subject to y(xB+Bo) > 1 Hint: (i) derive the solution to SVM classifier for the dataset (ii) we must have Vi yi(x?B + Bo) = 1 based on KKT condition. In other words, we must have Vi yi[Bo + Bix:(1) + B2x:(2)] = 1. Find the mass and center of mass of the solid E with the given density function rho.E is bounded by the parabolic cylinderz = 1 yand the planesx + 5z = 5,x = 0,andz = 0;rho(x, y, z) = 3.m = (x, y, z) = (___) A car on a straight flat road races a boat on a calm canal parallel to the road. The car has a constant acceleration of 1. 95m/s2 and reaches a top speed of 41. 0m/s. The boat has a constant acceleration of 6. 50m/s2 and reaches a top speed of 32. 0m/s. The car and the boat accelerate to their top speed and then maintain their top speed for the rest of the rest. They race for 1. 2km. Which vehicle wins the race? The Ka of NH4+ is 5.6 1010. The Kb of CN is 2 105. The pH of a salt solution of NH4CN would be:HintsThe Ka of NH4+ is 5.6 x 10-10. The Kb of CN- is 2 x 10-5. The pH of a salt solution of NH4CN would be:Greater than 7 because CN is a stronger base than NH4+ is an acidLess than 7 because CN is a stronger base than NH4+ is an acid.Greater than 7 because NH4+ is a stronger acid than CN is a base.Less than 7 because NH4+ is a stronger acid than CN is a base. The consulting company Strategizer has developed a popular methodology for categorizing specific customer frustrations and helping entrepreneurs design solutions that directly address those frustrations. Their widely used method is calledan empathy map.a competitor analysis.a Value Proposition Canvas.market sizing. Suppose that there are 60 consumers whose preferences for queen size mattresses are uniformly distributed over a unit interval characterizing the softness of the mattress. The leftmost end of the interval can be called Sinkingly Soft (very soft) while the rightmost end can be called Rest on a Rock (very hard). Currently, there are two mattress producers in the market; Firm A is located at the leftmost endpoint, while Firm B is located at the rightmost endpoint. The marginal and average costs to the firms are constant and equal to $90. Consumers face a transportation cost of $30, where represents the distance between their most preferred mattress type and the type they actually purchase.1a. Suppose Firm A charges $100 for a mattress and Firm B charges $110 for a mattress. How many mattresses will Firm A sell? Firm B? Compute each firm's respective profits.1b. Carefully graph the situation in part a; that is, graph the spatial market, the firms' locations, the delivered pricing schedules and indicate: i) the location of the marginal consumer, and ii) the market share for Firm A and the market share for Firm B. Question: The distribution property of matrices states that for square matrices A, B and C, of the same size, A(B+C) = AB + AC. Make up 3 different 2 x 2 matrices and demonstrate the distribution property. Work out each side of the equation separately and then show that the results are same. (a) A square has an area of 81 cm. What is the length of each side? cm (b) A square has a perimeter of 8 m. What is the length of each side? what is the expected number of sixes appearing on three die rolls Location-based technologies allows retailers to use which marketing tactic?a. crowdsourcing.b. sentiment analysis.c. bots.d. push notifications.e. seeds. A solenoid of radius r = 1.25 cm and length = 26.0 cm has 295 turns and carries 12.0 A.(a) Calculate the flux through the surface of a disk-shaped area of radius R = 5.00 cm that is positioned perpendicular to and centered on the axis of the solenoid as in the figure (a) above.(b) Figure (b) above shows an enlarged end view of the same solenoid. Calculate the flux through the tan area, which is an annulus with an inner radius of a = 0.400 cm and outer radius of b = 0.800 cm. Question 2 a) CJ Patel Ltd has a share price of $1.95. The company has made a renounceable rights issue offer and the offer is a two-for-six pro-rata issue of ordinary shares at $1.65 per share. (i) Explain what does it mean by the offer being renounceable and to whom is this offer made? Calculate the price of the right. (ii) (iii) Calculate the theoretical ex-rights share price. b) Explain the reason for the Basel II and III accords. What are their purpose, and how do they restrict the operations of banks? In your answer, use a hypothetical example to show how capital adequacy standards work in the Australian setting. [(2+2+3)+4] = 11 marks You just bought a newly issued bond which has a face value of $1,000 and pays its coupon once annually. Its coupon rate is 6%, maturity is 20 years and the yield to maturity for the bond is currently 8%. a. Do you expect the bond price to change in the future when the yield stays at 8%? Why or why not? Explain. (No calculation is necessary to answer this part of the question.) b. Calculate what the bond price would be in one year if its yield to maturity stays at 8%. c. Find the before-tax holding-period return for a one-year investment period if the bond sells at a yield to maturity of 7% by the end of the year (year 1). d. When the ordinary income tax rate is higher than the capital gains tax rate, tax authorities typically tax anticipated price appreciations from bonds at the ordinary income rate in order to prevent tax aversion with discount bonds. Suppose that from the total dollar return in part c), the coupon payment and the difference between the hypothetical prices in part b) and the purchase price are taxed at the ordinary income tax rate, 40%. The rest of the dollar return is considered capital gains (due to unanticipated change in yield-to-maturity from 8% to 7%) taxed at 30%. In other words, coupon payments and the anticipated price appreciation are taxed at the ordinary income tax rate and the rest at the lower capital gains rate. Using your answers in part b) and c), calculate the after-tax holding period return over one year if the yield to maturity is 7% at the end of the year. e. Find the realized compound yield before taxes for a two-year holding period, assuming that 1) investor who bought the newly issued bond now will sell the bond in two years, ii) bond's yield-to-maturity will be 7% at the end of the second year, and iii) the coupon in year 1 will be reinvested for one year at a 3% interest rate. Ignore taxes. The cost of a plant asset includes the purchase price, applicable taxes, purchase commissions, and all other amounts paid to acquire the asset and make it ready for its intended use. a. True b. False Which of the following is most likely to occur when a soldier stands at attention-very still, with legs and spine straight? a) Increased venus return b) Increased blood flow to the brain ) c) Increased storage of blood in the veins of the feet and legs d) Decreased pressure in the capillaries of the feet