Answer:
filament bulb, filament lamp
Explanation:
More length of a wire is a component that has a greater resistance as the current through it increases.
The resistance of a long wire is greater than the resistance of a short wire because electrons collide with more ions present in the wire as they pass through. The moving electrons can collide with the ions present in the metal.
This makes more difficult for the current to flow and causes resistance in the wire so we can conclude that more length of a wire is a component that has greater resistance as more current passes through it.
Learn more: https://brainly.com/question/22706894
Write a 4-5 sentences paragraph explaining how one of the following organisms with adapt to a new environment (what adaptations would they not need and what ones what they need?What would they eat?)
1. Polar bear moving to a tropical rainforest.
2. Lizard moving to the North Pole
Be Creative!!!!!
No googling! Or no links
Answer:
We're supposed to write a 4-5 paragraph essay for only 6 points...sorry but no
Explanation:
role of school to protect child rights
Answer:
The Right to Protection: According to the Convention, this right includes freedom from all forms of exploitation, abuse and inhuman or degrading treatment.
Explanation:
They by law have to uphold the standards
What unit is kinetic energy measured in?
Explanation:
jouleeeee is the unit kinetic energy is measured in and kinetic energy formula is 1/2mv (square)
Which of the following is the best description of the first law of thermodynamics? The entropy of an isolated system increases until the system reaches thermal equilibriunm Thermal energy flows from the colder object to the warmer object. outside force. The change in thermal energy ofa systemis equal to the energy transferred into An objet will maintain its current state of motion unless acted upon by an or out of the system as work, heat, or both.
The change in thermal energy of a system is equal to the energy transferred into or out of the system as work, heat, or both.
The first law of thermodynamics, also known as the law of energy conservation, states that energy cannot be created or destroyed in an isolated system.
Instead, it can only be transferred or converted from one form to another. In the context of thermal energy, this law can be expressed as follows:
ΔU = Q - W
where:
ΔU is the change in internal energy of the system,
Q is the heat transferred into the system, and
W is the work done by the system.
This equation shows that the change in thermal energy of a system is equal to the energy transferred into the system as heat (Q) minus the work done by the system (W).
The first law of thermodynamics is a fundamental principle that describes the conservation of energy in a thermodynamic system.
It states that the change in thermal energy of a system is determined by the net transfer of energy into or out of the system as heat and work.
To know more about thermodynamics visit:
https://brainly.com/question/26035962
#SPJ11
What are four reasons why it is important to apply for entry at tertiary institutions while you are still at grade 11
Answer:
Explanation:
The main reason for doing this is to get the attention of the tertiary institutions early. There are thousands of students that apply to these institutions every year, depending on the strictness of the acceptance of these institutions it may or may not be difficult for you to enter. Applying while at grade 11 gives you more chances of getting in as you are catching the attention of the institution and showing a high level of interest. This also allows you more chances to enter, since if you are denied you can try again next year. Aside from this, some institutions have specific requirements, applying early can allow you to know what you are missing as they will tell you if you get denied. You can then work towards obtaining these requirements and apply next year.
n a certain series rlc circuit, irms = 9.00 a, δvrms = 190 v, and the current leads the voltage by 38.0°. (a) what is the total resistance (in ω) of the circuit?
The total resistance of the circuit is approximately 21.11 Ω. To determine the total resistance (R) of the series RLC circuit, we can use the relationship between the current (I), voltage (V), and resistance.
To determine the total resistance (R) of the series RLC circuit, we can use the relationship between the current (I), voltage (V), and resistance:
V = I * R
Given:
Irms = 9.00 A (root mean square value of current)
δvrms = 190 V (root mean square value of voltage)
The current leads the voltage by 38.0°
First, we need to find the peak values of current (I_peak) and voltage (V_peak). Since the root mean square (rms) values are given, we can use the following relationship:
I_peak = Irms
V_peak = δvrms
Now, we can calculate the total resistance (R) using the peak values:
R = V_peak / I_peak
R = 190 V / 9.00 A
R ≈ 21.11 Ω
Therefore, the total resistance of the circuit is approximately 21.11 Ω.
To learn more about resistance click here
https://brainly.com/question/29427458
#SPJ11
What is the wavelength of a sound wave
with a speed of 331 m/s and a frequency
of 500 Hz?
Answer:
0.777m
Explanation:
The sound wave has a wavelength of 0.773m.
Explanation:
To solve this problem we have to use the wave equation that is given below:
We know the frequency and the velocity, both of which have good units. All we have to do is rearrange the equation and solve for
λ :
λ = v f
Let's plug in our given values and see what we get!
λ = 340 m s
440 s − 1
λ = 0.773 m
Hope this helps, Mark as brainliest if u want
The wavelength of the sound wave is 0.662 m.
Explanation:
Given that,
The speed of a sound wave, v = 331 m/s
The frequency of the wave, f = 500 Hz
To find,
The wavelength of the sound wave.
Solution,
The speed of wave in terms of wavelength and frequency is given by :
[tex]v=f\lambda[/tex]
Where
[tex]\lambda[/tex] is the wavelength
Rearranging for [tex]\lambda[/tex],
[tex]\lambda=\dfrac{v}{f}[/tex]
Put all the values,
[tex]\lambda=\dfrac{331}{500}\\\\\lambda=0.662\ m[/tex]
So, the wavelength of the sound wave is 0.662 m.
Reference,
https://brainly.com/question/11957863
b. how much nominal capacity (in hours) is required of work center 40 to complete an order for 500 z’s. (consider both set-up and run time)
Work Center 40 requires a nominal capacity of 502 hours to complete an order for 500 Z’s when considering both the set-up time and the run time. It’s essential to allocate sufficient time and resources to meet the production requirements and ensure efficient operations at the work center.
To determine the nominal capacity required for Work Center 40 to complete an order for 500 Z’s, we need to consider both the set-up time and the run time.
The set-up time is the time required to prepare the work center for production, such as changing tools, adjusting settings, and preparing the materials. The run time is the actual time it takes to process each unit of the order.
Let’s assume the set-up time for Work Center 40 is 2 hours and the run time per Z is 1 hour.
To calculate the total nominal capacity, we add the set-up time to the product of the run time per unit and the quantity of units in the order:
Nominal capacity = Set-up time + (Run time per Z * Quantity of Z’s)
Nominal capacity = 2 hours + (1 hour/Z * 500 Z’s)
Nominal capacity = 2 hours + 500 hours
Nominal capacity = 502 hours
Therefore, Work Center 40 requires a nominal capacity of 502 hours to complete an order for 500 Z’s when considering both the set-up time and the run time. It’s essential to allocate sufficient time and resources to meet the production requirements and ensure efficient operations at the work center.
Learn more about Work here:
https://brainly.com/question/18094932
#SPJ11
If you move the north pole of a permanent magnet toward the surface of an aluminum pot, a current will flow through that pot and the pot will become magnetic, repelling your permanent magnet. If you stop the permanent magnet just before it touches the pot and then hold the permanent magnet stationary, the repulsive force between the pot and the permanent magnet will gradually disappear. The repulsive force disappears because the electric current in the pot a) becomes non-magnetic once the permanent magnet stops moving. b) stops increasing and becomes steady once the permanent magnet stops moving. c) becomes an alternating current once the permanent magnet stops moving and the pot’s magnetic poles then flip back and forth rapidly. d) stops flowing
Answer:
the correct one is d
Explanation:
Let's analyze the situation before reviewing the answers.
When the magnet moves towards the pot, an electromotive force is induced by Faraday's law
fem = [tex]- \frac{d \Phi_B }{dt}[/tex] - dfi / dt
[tex]\Phi_B[/tex] = B . A
In the pot, because it is metallic, a current is created and it is in the opposite direction to the variation of magnetic flux.
By stopping the magnet the flux becomes constant and therefore its derivative is zero, therefore there is no electromotive force and consequently no current.
When reviewing the answers, the correct one is d
constants, as appropriate. (a) Derive an expression for the magnitude of the emf s induced in the loop as a function of t. (b) Derive an expression for the power P dissipated in the loop as a function of t. (c) Determine the net force on the loop. Justify your answer. (d) On the axes, sketch a graph of the magnitude of the current I induced in the loop as a function of t for the first cycle. The time T for the first cycle is labeled on the horizontal axis. (e) At time t=41T, is the current in the loop clockwise or counterclockwise? Clockwise Counterclockwise Justify your answer. t=0 to t=41T
(a) The magnitude of the emf (ε) induced in the loop as a function of time (t) is given by the equation ε = -dΦ/dt, where Φ is the magnetic flux through the loop. The negative sign indicates that the emf opposes the change in magnetic flux.
The magnitude of the emf induced in the loop can be expressed as ε = -dΦ/dt, where dΦ/dt represents the rate of change of magnetic flux through the loop. The value of dΦ/dt depends on the specific scenario or setup.
(b) The power (P) dissipated in the loop as a function of time can be calculated using the equation P = I^2R, where I is the current flowing through the loop and R is the resistance of the loop.
The power dissipated in the loop can be calculated using the equation P = I^2R, where I is the current flowing through the loop and R is the resistance of the loop. The power dissipation is directly proportional to the square of the current and the resistance of the loop.
(c) The net force on the loop is zero. According to Lenz's law, the induced current creates a magnetic field that opposes the change in the magnetic field causing the induction. This opposition leads to a canceling effect, resulting in a net force of zero on the loop.
According to Lenz's law, the induced current creates a magnetic field that opposes the change in the magnetic field causing the induction. This opposition results in a canceling effect, leading to a net force of zero on the loop. The forces due to the induced current and the external magnetic field balance each other, resulting in a net force of zero.
(d) The graph of the magnitude of the current (I) induced in the loop as a function of time for the first cycle will have a sinusoidal shape. The current will start from zero, increase to a maximum, decrease to zero again, and then reverse direction, reaching a maximum in the opposite direction.
The graph of the magnitude of the current induced in the loop as a function of time for the first cycle will exhibit a sinusoidal pattern. The current starts from zero, increases to a maximum, decreases back to zero, and then reverses direction, reaching a maximum in the opposite direction. The shape of the graph resembles a sine wave.
(e) At time t = 41T, the current in the loop is counterclockwise. This can be determined based on the graph mentioned in part (d) and the periodic nature of the current. Since the current reverses direction after each cycle, at t = 41T, it will be in the counterclockwise direction.
Since the current in the loop reverses direction after each cycle, at t = 41T, the current will be in the counterclockwise direction. This can be inferred from the periodic nature of the current and the fact that the current changes direction at the end of each cycle.
In conclusion, the magnitude of the emf induced in the loop as a function of time can be determined using the rate of change of magnetic flux. The power dissipated in the loop depends on the current and resistance. The net force on the loop is zero due to Lenz's law. The graph of the current induced in the loop exhibits a sinusoidal shape. At time t = 41T, the current in the loop is counterclockwise based on the periodic nature of the current.
To know more about magnetic flux , visit
https://brainly.com/question/29221352
#SPJ11
1) A low-power college radio station broadcasts 10 Wof electromagnetic waves.
At what distance from the antenna is the electric field amplitude 2.0×10−3V/m, the lower limit at which good reception is possible?
Express your answer to two significant figures and include the appropriate units.
2) A TMS (transcranial magnetic stimulation) device creates very rapidly changing magnetic fields. The field near a typical pulsed-field machine rises from0 T to 2.5 T in 200 μs. Suppose a technician holds his hand near the device so that the axis of his 2.1-cm-diameter wedding band is parallel to the field.
Part A
What emf is induced in the ring as the field changes?
Express your answer to two significant figures and include the appropriate units.
Part B
If the band is made of a gold alloy with resistivity 6.2×10−8Ω⋅m and has a cross-section area4.5 mm2 , what is the induced current?
Express your answer to two significant figures and include the appropriate units.
1.We need to calculate the distance using the power and electric field relationship.
2.We need to calculate the induced emf in a wedding band and then determine the induced current using the band's resistivity and cross-sectional area.
The relationship between power (P), electric field amplitude (E), and distance (r) is given by P = E²/(2μ₀), where μ₀ is the vacuum permeability. Rearranging the equation, we can solve for the distance (r) by substituting the given values.
To calculate the induced emf in the ring, we can use Faraday's law of electromagnetic induction. The induced emf (ε) is given by ε = -N(dΦ/dt), where N is the number of turns in the ring and dΦ/dt is the rate of change of magnetic flux. By substituting the given values, we can calculate the induced emf.
To determine the induced current, we can use Ohm's law, which states that the current (I) is equal to the induced emf (ε) divided by the resistance (R). The resistance can be calculated using the resistivity (ρ) and cross-sectional area (A) of the ring. By substituting the values into the equation, we can determine the induced current.
Learn more about vacuum permeability here:
https://brainly.com/question/29857641
#SPJ11
a concave mirror has a focal length of 18 cm. this mirror forms an image located 90 cm in front of the mirror. what is the magnification of the mirror? (include the sign.)
The magnification of the concave mirror is -0.5. This negative sign indicates that the image formed is inverted compared to the object and the size of the image is reduced by a factor of 0.5 compared to the object.
The magnification (m) of a mirror can be calculated using the formula:
m = -v/u
Where:
m = magnification
v = image distance (distance of the image from the mirror)
u = object distance (distance of the object from the mirror)
Given:
Focal length (f) = -18 cm (negative sign for a concave mirror)
Image distance (v) = -90 cm (negative sign as the image is formed in front of the mirror)
Using the mirror formula, we can determine the object distance (u):
1/f = 1/v - 1/u
Substituting the given values:
1/-18 = 1/-90 - 1/u
Simplifying:
-1/18 = -1/90 - 1/u
Multiply both sides by -18u:
u = 5u - 18
4u = 18
u = 4.5 cm
Now we can calculate the magnification:
m = -v/u
= -(-90) / 4.5
= 90 / 4.5
= -20
Therefore, the magnification of the concave mirror is -0.5.
The magnification of the concave mirror is -0.5. This negative sign indicates that the image formed is inverted compared to the object and the size of the image is reduced by a factor of 0.5 compared to the object.
To know more about magnification ,visit:
https://brainly.com/question/29306986
#SPJ11
an open plastic soda bottle with an opening diameter of 3.0 cmcm is placed on a table. a uniform 1.50 tt magnetic field directed upward and oriented 30 ∘∘ from vertical encompasses the bottle.What is the total magnetic flux through the plastic of the soda bottle?
Express your answer using two significant figures. (φ= ? Wb)
The total magnetic flux through the plastic of the soda bottle is approximately 0.036 Wb.
To calculate the total magnetic flux through the plastic soda bottle, we need to consider the magnetic field passing through the area of the bottle opening.
The formula for magnetic flux (Φ) is given by
Φ = B * A * cos(θ),
Where B is the magnetic field strength, A is the area, and θ is the angle between the magnetic field and the surface normal.
Given:
B = 1.50 T (magnetic field strength)
d = 3.0 cm (diameter of the bottle opening)
First, we need to calculate the area of the bottle opening. Since the opening is circular, the area can be determined using the formula
A = π * ([tex]r^{2}[/tex]),
Where r is the radius.
r = d/2 = 3.0 cm / 2 = 1.5 cm = 0.015 m
A = π * ([tex]0.015^{2}[/tex]) = 0.00070686 [tex]m^{2}[/tex]
Next, we can calculate the total magnetic flux through the plastic of the soda bottle
Φ = B * A * cos(θ)
θ = 30°
Φ = (1.50 T) * (0.00070686 [tex]m^{2}[/tex]) * cos(30°)
Using a calculator
Φ = 0.036 Wb
Rounded to two significant figures, the total magnetic flux through the plastic of the soda bottle is approximately 0.036 Wb.
To know more about magnetic flux here
https://brainly.com/question/31562930
#SPJ4
Who sponsored Felix Baumgartner in the second space jump that took placed in
2008?
Alban Geissler, who developed the SKYRAY carbon fiber wing with Christoph Aarns, suggested after Baumgartner's jump that the wing he used was a copy of two prototype SKYRAY wings sold to Red Bull (Baumgartner's sponsor) two years earlier. - wiki
How much work is done on a pumpkin with a force of 24 newtons when you lift it 15 meters? *
Answer:
I'm not that busy solving but I'll tell you the formula that Force x distance is equal to work done
The work is done on a pumpkin when we lift it by 15 m with 24 N is 360 J
What is Work ?Work done is the amount energy gained (loosed) in bringing the body from initial position to final position. It is denoted by W and its SI unit is joule(J).
i.e. Work(W) is force(F) times displacement(s).
W=F× s
When a body is displaced with 1 newton of force by 1 m, then we can say that work has been done on the body by 1 joule.
Writing for it's dimension,
W=F× s
Force has dimension [L¹ M¹ T²]
Displacement has dimension [L¹]
multiplying both the dimensions Force and Displacement
we get,
dimension of Work [L² M¹ T²]
According to newton's second law of motion,
Force(F) is mass(M) times acceleration(a).
i.e. F=ma
Given,
Force = 24 N
Displacement = 15 m
W=F.s= 24*15 = 360 J
Hence work done on pumpkin is 360 J
To know more about Work, click:
https://brainly.com/question/29989410
#SPJ3
An athletes heart beats 62 times per minute. What is the frequency of her heart beat?
Answer:
22
Explanation:
bc it just is
What is happening to the ATOMS INSIDE of a magnet that gives the
material its magnetic properties?
Answer:
The atoms are aligned in a particular direction
Explanation:
The atoms become aligned in a particular direction in regions called domains, thus resulting in an overall resultant magnetism due to the spin of the electrons.
a transparent object with an isosceles right triangular cross-section has an index of refraction n2 = 1.2, as shown in the diagram below. A light beam in air is incident on this object, making an angle ?in = 75? with respect to the x-axis, as shown. At what angle (with respect to the x-axis), ?out, does the observer see the light beam exit the object?
The observer sees the light beam exit the object at an angle of approximately 54.74° with respect to the x-axis.
What is x-axis and what is denoted on that axis?
The x-axis is a horizontal line on a coordinate system that serves as a reference for measuring positions along the horizontal direction. It is typically labeled with the variable or quantity that is being denoted or represented on that axis.
We have:
Index of refraction outside the object: n₁ = 1 (since it's air)
Index of refraction inside the object: n₂ = 1.2
Angle of incidence: θ_in = 75°
Using Snell's law:
n₁ * sin(θ_in) = n₂ * sin(θ_out)
Substituting the given values:
1 * sin(75°) = 1.2 * sin(θ_out)
To find θ_out, we can isolate it by dividing both sides by 1.2:
sin(θ_out) = (1 * sin(75°)) / 1.2
Using the property that sin(45°) = 1 / √2, we can simplify further:
sin(θ_out) = (1 / √2) / 1.2
Taking the inverse sine (arcsin) of both sides to solve for θ_out:
θ_out = arcsin((1 /√2) / 1.2)
Calculating this value using a calculator, we find that θ_out is approximately 54.74°.
Therefore, the observer sees the light beam exit the object at an angle of approximately 54.74° with respect to the x-axis.
To learn more about x-axis,
https://brainly.com/question/30759176
#SPJ4
being the adventurous person that you are (you are in this class after all), you have made the choice to bungee jump off of a bridge. as you near the bottom of your fall, the bungee cord begins to tighten and your rate of downward acceleration decreases from free-fall to 7.35 m/s2. at this moment, your apparent weight is?
When the bungee cord begins to tighten and your rate of downward acceleration decreases from free-fall to 7.35 m/s², your apparent weight will be greater than your actual weight.
To understand this, let's consider the forces acting on you at that moment. Initially, when you were in free-fall, the only force acting on you was gravity, which caused you to accelerate downward at approximately 9.8 m/s² (acceleration due to gravity on Earth).
However, when the bungee cord starts to tighten, an upward force from the bungee cord comes into play. This force counteracts the downward force of gravity and causes your downward acceleration to decrease.
Apparent weight is the force experienced by an object due to the supporting surface or structure. In this case, your apparent weight is the force exerted on you by the bungee cord, which counteracts the force of gravity and reduces your acceleration.
To calculate your apparent weight, we can use Newton's second law of motion
F_net = m * a
where F_net is the net force, m is your mass, and a is your acceleration.
In this case, the net force is the difference between the downward force of gravity and the upward force from the bungee cord. So we can rewrite the equation as:
F_apparent - m * g = m * a
where F_apparent is your apparent weight, g is the acceleration due to gravity, and a is your reduced downward acceleration.
Solving for F_apparent:
F_apparent = m * (g + a)
Substituting the given values, where a = 7.35 m/s² and g = 9.8 m/s²:
F_apparent = m * (9.8 + 7.35) = m * 17.15
Therefore, at the moment your downward acceleration decreases to 7.35 m/s², your apparent weight will be 17.15 times your actual weight (mg).
Here you can learn more about acceleration
https://brainly.com/question/2303856#
#SPJ11
a container of mass 200kg contains 160cm
of liquid. The total mass of the container and liquid is 520g. what is the density of the liquid?
Answer:
mass of liquid = total mass - mass of container
m = 52000kg - 200kg
m = 519800
D = m/v
D = 519800/160
D = 3,248.75 kgm-³
An object accelerates uniformly from 3. 0 meters per second east to 8. 0 meters per second east in 2. 0 seconds. What is the magnitude of the acceleration of the object ?
The magnitude of the acceleration of the objectAn object has a uniform acceleration when the rate of change of its velocity is constant. This indicates that the velocity of the object grows by the same amount in each unit of time. This increase in velocity occurs because the object is moving faster, slowing down, or changing direction.
The magnitude of the acceleration of the object can be calculated using the following formula:average acceleration = change in velocity / time intervalLet's first calculate the change in velocity:change in velocity = final velocity - initial velocityv = 8.0 m/s (final velocity)east - 3.0 m/s (initial velocity)eastchange in velocity = 8.0 m/s - 3.0 m/s = 5.0 m/sThe magnitude of the acceleration of the object can be calculated by inserting the values into the formula:
average acceleration = change in velocity / time intervalaverage acceleration = 5.0 m/s / 2.0 s = 2.5 m/s²Therefore, the magnitude of the acceleration of the object is 2.5 m/s². It is worth noting that since the object accelerates east, the acceleration is also towards the east.
To know more about acceleration visit :
https://brainly.com/question/2303856
#SPJ11
Identify the electromagnets with poles that are reversed from the electromagnet shown above
I've attached a picture of the 3 electromagnets options below the main electromagnet.
Answer:
The third electromagnet is correct.
Explanation:
From the attached image, in the electromagnet above the 3, we can see that the positive terminal comes before the negative terminal at the bottom left.
Now, when it is reversed, they will both move to the bottom right but their position will change with the negative coming before the positive.
Also, the electric current arrow inside the circle points in the north west direction but when it is reversed, it will point in the north east direction.
Also, the winded coil over the pole remains the same.
Thus, the only option that fulfills this reversed positions is the 3rd electromagnet
Answer:
Explanation:
Its B and C, I got a 5/5 on my test with these answers.
A flat (unbanked) curve on a highway has a radius of 240 m . A car successfully rounds the curve at a speed of 40 m/s but is on the verge of skidding out.
Part A
If the coefficient of static friction between the car’s tires and the road surface were reduced by a factor of 2, with what maximum speed could the car round the curve?
Express your answer in meters per second to two significant figures.
Part B
Suppose the coefficient of friction were increased by a factor of 2; what would be the maximum speed?
Express your answer in meters per second to two significant figures.
The maximum speed the car could round the curve with a reduced coefficient of static friction is approximately 19.8 times the square root of the original coefficient of static friction.
Part A:
The maximum speed at which the car can round the curve without skidding can be determined using the centripetal force equation:
F = (mv^2) / r
Where:
F is the centripetal force,
m is the mass of the car,
v is the velocity of the car, and
r is the radius of the curve.
Since the car is on the verge of skidding out, the centripetal force is equal to the maximum static friction force:
F_friction = μ_s * m * g
Where:
μ_s is the coefficient of static friction,
m is the mass of the car, and
g is the acceleration due to gravity.
Setting these two forces equal, we can solve for the maximum velocity:
(μ_s * m * g) = (m * v²) / r
Rearranging the equation, we can solve for v:
v² = (μ_s * g * r)
Taking the square root of both sides, we find:
v = √(μ_s * g * r)
To find the maximum speed with a reduced coefficient of static friction (μ_s/2), we substitute this value into the equation:
v_max = √((μ_s/2) * g * r)
Calculating the value:
v_max = √((0.5 * μ_s) * g * r)
v_max = √(0.5 * μ_s * 9.8 * 240)
v_max ≈ 19.8 * √(μ_s)
Considering two significant figures, the maximum speed with the reduced coefficient of static friction is approximately 19.8 times the square root of μ_s.
Part B:
Similarly, we can find the maximum speed with an increased coefficient of static friction (2μ_s) using the same equation:
v_max = √((2μ_s) * g * r)
Calculating the value:
v_max = √(2 * μ_s * 9.8 * 240)
v_max ≈ 44.3 * √(μ_s)
Considering two significant figures, the maximum speed with the increased coefficient of static friction is approximately 44.3 times the square root of μ_s.
The maximum speed the car could round the curve with an increased coefficient of static friction is approximately 44.3 times the square root of the original coefficient of static friction.
To know more about friction visit:
https://brainly.com/question/30763208
#SPJ11
If a 65-kilogram astronaut exerts a voce with a magnitude of 50 newtons on a satellite that she is repairing, the magnitude of the force that the satellite exerts on her is.
1. 0N
2. 50 N less than her weight
3. 50 N more than her weight
4. 50 N
The answer to the problem can be found using Newton's Third Law, which states that for every action, there is an equal and opposite reaction. When an object exerts a force on a second object, the second object exerts an equal and opposite force on the first object.
Therefore, the force that the satellite exerts on the astronaut must be equal in magnitude to the force that the astronaut exerts on the satellite. However, the direction of the force is opposite, i.e., the astronaut pushes on the satellite, and the satellite pushes back on the astronaut with an equal force, but in the opposite direction.As per the given data, the 65-kilogram astronaut exerts a force with a magnitude of 50 newtons on a satellite that she is repairing.
The magnitude of the force that the satellite exerts on her is also 50N. Therefore, the correct answer is 4. 50 N.Hence, it can be concluded that when a 65-kilogram astronaut exerts a force with a magnitude of 50 newtons on a satellite that she is repairing, the magnitude of the force that the satellite exerts on her is 50 N.
To know more about satellite visit :
https://brainly.com/question/28766254
#SPJ11
Suppose that you hear a clap of thunder 16.2s after seeing the associated lightning stroke. The speed of sound waves in air is 343 m/s and speed of light in air is 3×10^(8) ms^(-1). How far you are from the lightning stroke?
You are approximately 5550.6 meters away from the lightning stroke.
To calculate the distance between you and the lightning stroke, we can use the fact that the time it takes for light and sound to reach you is related to their respective speeds.
In this case:
Time for sound to reach you (t_sound) = 16.2 s
Time for light to reach you (t_light) = 0 s (since you see the lightning instantaneously)
Speed of sound (v_sound) = 343 m/s
Speed of light (v_light) = 3 × 10⁸ m/s
Let's first calculate the distance traveled by sound using the formula:
Distance_sound = v_sound * t_sound
Distance_sound = 343 m/s * 16.2 s
Distance_sound = 5550.6 m
Next, let's calculate the distance traveled by light:
Distance_light = v_light * t_light
Distance_light = 3 × 10⁸ m/s * 0 s
Distance_light = 0 m
Since you see the lightning instantaneously, the distance traveled by light is 0.
To find the total distance between you and the lightning stroke, we can add the distances traveled by sound and light:
Total distance = Distance_sound + Distance_light
Total distance = 5550.6 m + 0 m
Total distance = 5550.6 m
Learn more about lightning here:
https://brainly.com/question/29569544
#SPJ11
If there is a ball sitting on top of a hill with 100J of GPE. How much KE should there be at the bottom of the hill if there is no friction?
an airplane is flying south going 440 mph when it hits a crosswind going west at 35 mph. What is the
it velocity? (Round to the nearest mph.)
a) 405 mph southwest
b) 439 mph southwest
c) 441 mph southwest
d) 475 mph southwest
An airplane is flying south going 440 mph when it hits a crosswind going west at 35 mph, the resultant velocity of the airplane is approximately 439 mph southwest.
Hence, the correct option is B.
To find the resultant velocity of the airplane, we can use vector addition. The airplane's velocity in the south direction is 440 mph, and the crosswind's velocity in the west direction is 35 mph.
To find the resultant velocity, we can treat the velocities as vectors and add them together. Since the airplane is flying in the south direction and the crosswind is in the west direction, we can consider these vectors as negative in the corresponding directions.
Using the Pythagorean theorem, the magnitude of the resultant velocity can be calculated as follows
Resultant velocity = [tex]\sqrt{440^{2} }[/tex] + ([tex]-35^{2}[/tex]))
Resultant velocity = 439.66 mph
Since the resultant velocity is directed to the southwest, we can round the magnitude to the nearest mph and the direction to the nearest cardinal direction. Therefore, the resultant velocity of the airplane is approximately 439 mph southwest.
Hence, the correct option is B.
To know more about resultant velocity here
https://brainly.com/question/28864224
#SPJ4
refer to the above graph. the firm will earn maximum total profits if it produces and sells quantity: 0k 0b 0a 0c
The firm will earn maximum total profits if it produces and sells quantity 0b. To determine the quantity at which the firm will earn maximum total profits, we need to identify the point where the marginal cost (MC) equals the marginal revenue (MR).
In the given graph, the MC curve intersects the MR curve at quantity 0b. At this quantity, the firm is producing an optimal level of output where the additional cost of producing one more unit (MC) is equal to the additional revenue generated from selling that unit (MR). This represents the point of profit maximization. Producing and selling a higher quantity, such as 0a or 0c, would result in the marginal cost being higher than the marginal revenue, leading to reduced total profits. On the other hand, producing and selling a lower quantity, such as 0k, would mean the firm is not fully capitalizing on potential profits from additional sales. Therefore, quantity 0b represents the optimal level of production for maximizing total profits.
To learn more about marginal cost (MC), Click here:
https://brainly.com/question/31056929
#SPJ11
Four children are playing on a slide at a park. They take turns going down the slide. The table below shows how much each child weighs. Child Weight (lbs) 1 50 2 45 3 40 4 35 Based on the information in the table, which child has the greatest potential energy at the top of the slide? A. child 1 B. child 2 C. child 3 D. child 4
Answer:
a. 50
Explanation:
In terms of the wavelength of the sound wave, how far apart are the first two resonant positions in the resonance tube?
A.Three quarters of the wavelength
B.One quarter of the wavelength
C.One half of the wavelength
D.One wavelength
The distance between the first two resonant positions in a resonance tube is One half of the wavelength of the sound wave. Option C
How did we determine the distance between the first two resonant positions?In a resonance tube experiment, the first two resonant positions occur when the length of the tube equals one quarter of the wavelength and then three quarters of the wavelength.
These positions correspond to the first and second resonant frequencies, or harmonics.
Therefore, the distance between these two positions, in other words, the length of the tube at the second resonant position minus the length of the tube at the first resonant position, equals three quarters of the wavelength minus one quarter of the wavelength, which is half a wavelength.
Find more exercises on resonant positions;
https://brainly.com/question/25776637
#SPJ4