Answer:
24,000 years
Explanation:
Solids tend to be dense and difficult to __1__. They do not flow or take the shape of their containers, like liquids do, because the particles in solids vibrate around __2__ points. When a solid is heated until its particles vibrate so rapidly that they are no longer held in fixed positions, the solid __3__. The __4__ is the temperature at which a solid changes to a liquid. The melting and __5__ of a substance are at the same temperature. In general, ionic solids tend to have relatively __6__ melting points, while molecular solids tend to have relatively low melting points. Most solids are __7__. The particles are arranged in a pattern known as a crystal __8__. The smallest subunit of a crystal lattice is the __9__. Some solids lack an ordered internal structure and are called __10__ solids.
Answer:
1. Compress.
2. Fixed.
3. Melts.
4. Melting point.
5. Freezing point.
6. High.
7. Crystalline.
8. Lattice.
9. Unit cell.
10. Amorphous.
Explanation:
In science, matter can be defined as anything that has mass and occupies space. Any physical object that is found on earth is typically composed of matter. Matter are known to be made up of atoms and as a result has the property of existing in states.
Generally, matter exists in three (3) distinct or classical phases and these are;
1. Gas: it is the state of matter in which the physical substance has no definite shape or volume and as a result fills all available space. Also, gases are easily compressible and can flow. Examples of gases are hydrogen, oxygen, argon, nitrogen etc.
2. Liquid: it is the state of matter in which the physical substance can be poured and it takes the shape of its container. Also, liquids generally have a definite volume. Examples of liquids are urine, water, milk, blood etc.
3. Solid: it is the state of matter in which the physical substance has a definite shape and fixed volume but not compressible. Examples of solids are pen, screwdriver, television, car etc.
Filling the missing words (texts) of the question, we have;
Solids tend to be dense and difficult to compress. They do not flow or take the shape of their containers, like liquids do, because the particles in solids vibrate around fixed points. When a solid is heated until its particles vibrate so rapidly that they are no longer held in fixed positions, the solid melts. The melting point is the temperature at which a solid changes to a liquid. The melting and freezing point of a substance are at the same temperature. In general, ionic solids tend to have relatively high melting points, while molecular solids tend to have relatively low melting points. Most solids are crystalline. The particles are arranged in a pattern known as a crystal lattice. The smallest subunit of a crystal lattice is the unit cell. Some solids lack an ordered internal structure and are called amorphous solids.
calculate how many Liters of 0.50 M silver nitrate solution you will need to provide the 2.4x10^-3 moles of silver nitrate
Answer:
4.8x10⁻³ Liters are required
Explanation:
Molarity is an unit of concentration in chemistry defined as the ratio between moles of solute (In this case, silver nitrate) and liters of solution.
The 0.50M solution contains 0.50 moles of silver nitrate per liter of solution.
To provide 2.4x10⁻³ moles Silver nitrate are required:
2.4x10⁻³ moles * (1L / 0.50 moles) =
4.8x10⁻³ Liters are requiredConisder the reactions and their equilibrium constants.
A+2B<--->2C K1=2.45
2C<--->D. K2=0.124
Calculate the value of the equilibrium constant for the reaction D−⇀A+2B. D ↽− ⇀ A + 2 B .
The equilibrium constant for the reaction D ⇌ A + 2B is approximately 0.3038.
What is the equilibrium constant for the reaction?The equilibrium constant, K, for the reaction D ⇌ A + 2B is calculated from the equilibrium constants of the individual reactions and from the principle of multiplying and dividing equilibrium constants.
Given the reactions and their equilibrium constants:
A + 2B ⇌ 2C with K1 = 2.45
2C ⇌ D with K2 = 0.124
To obtain the equilibrium constant for the desired reaction, we can multiply the equilibrium constants of the individual reactions:
K = K1 * K2
K = 2.45 * 0.124
K = 0.3038
Learn more about equilibrium constants at: https://brainly.com/question/3159758
#SPJ4
The normal boiling point of Br2(l) is 58.8 ∘C, and its molar enthalpy of vaporization is ΔHvap = 29.6 kJ/mol.
You may want to reference(Pages 813 - 815) Section 19.2 while completing this problem.
When Br2(l) boils at its normal boiling point, does its entropy increase or decrease?
When boils at its normal boiling point, does its entropy increase or decrease?
When Br2(l) boils at its normal boiling point, its entropy increases. Entropy is a measure of the disorder or randomness in a system, and boiling represents a transition from a more ordered liquid phase to a more disordered gaseous phase.
During boiling, the intermolecular forces holding the liquid Br2 molecules together are overcome, and the molecules gain enough energy to escape into the gas phase. In the gaseous phase, the molecules have greater freedom of movement and occupy a larger volume compared to the liquid phase. This increase in molecular motion and expansion of volume contributes to an increase in the disorder or randomness of the system, leading to an increase in entropy. The concept of entropy can also be understood from a statistical perspective. In the liquid phase, the molecules are more closely packed and have limited freedom of movement. However, in the gaseous phase, the molecules are dispersed and have a larger number of possible positions and velocities. This increased number of microstates in the gaseous phase corresponds to a higher probability distribution, which is a characteristic of higher entropy.
Therefore, when Br2(l) boils at its normal boiling point, its entropy increases as the system transitions from a more ordered liquid phase to a more disordered gaseous phase.
Learn more about entropy here : brainly.com/question/29145818
#SPJ11
Which of the following is NOT a reason for the experimental volume of the flask to be incorrect?
The constant temperature water bath decreases the volume occupied by the gas.
The volume labeled on the flask is not an accurate measure of the total volume of the flask.
The HCl solution added to the flask decreases the volume occupied by gas.
The rubber stopper used to seal the flask decreases the volume occupied by the gas.
Answer:
2
Explanation:
i dont andesdant
The experimental volume of the flask is found to be incorrect as the volume labeled on the flask is not an accurate measure of the total volume of the flask as it will result in errors.
What are errors?
Errors in chemical analysis result when there is a difference between observed value and the true value.If the magnitude of errors is large , it results in decrease in accuracy, reproducibility, and precision.
There are three types of errors:1) random error 2) systematic error 3) human error.The cause of random errors are difficult to quantify while the human errors can be minimized by taking a range of readings to reduce the error.
Errors while measuring boiling point may be human errors while noting down the boiling temperature or instrumental or systematic error if there is a fault in the thermometer.
Learn more about errors,here:
https://brainly.com/question/15810279
#SPJ2
sort each characteristic according to whether it describes acid, bases, or both.
Answer:
Acids: react with metals, taste sour
Both: can cause burns, conduct electricity
Basis: react with nonmetals, taste bitter
Explanation:
This is the right answer
Answer:
Acids: react with metals, taste sour
Both: can cause burns, conduct electricity
Basis: react with nonmetals, taste bitter
it's right, I did it.
PLS HELP MARKING BRAINLIEST! (Dont answer if u dont know and please don't answer random things-)
What happens when Mentos and Diet Coke are mixed?
What causes Mentos and Diet Coke to react that way?
Is the reaction Chemical or Physical?
How could we prove one way or the other?
When mentos and diet coke are mixed, the diet soda explodes
Explanation:
Due to the fact that the mentos are dense, they sink to the bottom of the bottle which gives the diet coke its explosion.
Answers & Explanations:
What happens when Mentos and Diet Coke are mixed?
Mentos sinks rapidly through the liquid, causing a fast, large eruption.
What causes Mentos and Diet Coke to react that way?
The addition of the Mentos leads to the rapid nucleation of carbon dioxide gas bubbles in the Diet Coke, causing them to precipitate out of the solution.
Is the reaction Chemical or Physical?
The eruption is caused by a physical reaction.
How could we prove one way or the other?
We can prove it by using the equation:
[tex]CO_{2} (aq) = Co_{2}(g)[/tex]
draw a lewis structure for bf3 that obeys the octet rule if possible and answer the following questions based on your drawing.
For the central boron atom:
The number of lone pairs = 0The number of single bonds = 3The number of double bonds = 0The central boron atom:
A. Obeys the octet rule.
In the Lewis structure of BF3, boron (B) is the central atom bonded to three fluorine (F) atoms. Boron has an atomic number of 5 and its electronic configuration is 1s² 2s² 2p¹. In its ground state, boron has three valence electrons. In BF3, each fluorine atom shares one electron with boron to form a single bond, resulting in three single bonds between boron and fluorine.
Since boron only forms three single bonds and has no lone pairs of electrons, it satisfies the octet rule. The octet rule states that atoms tend to gain, lose, or share electrons to achieve a stable electron configuration with eight electrons in their valence shell, similar to the nearest noble gas. Therefore, the central boron atom in BF3 obeys the octet rule.
To learn more about Lewis structure, here
https://brainly.com/question/4144781
#SPJ4
How many grams of water react to form 4.50 moles of Mg(OH)2?
MgO(s) + H20(1)
Mg(OH)2(s)
Answer: mass of water is 81.1 g
Explanation: from reaction eguation you see there are equal amounts of water and Mg(OH)2. Then amount of water is 4.50 mol. Molar mass of water is 18.016 g/mol.
Mass m= n·M= 4.50 mol· 18.016 g/mol = 81.1 g
The number of grams of water reacting to form a mass of water is 81.1 g.
What is mass?Mass is the quantity of matter in a physical body.
The given reaction is
MgO(s) + H₂O(1) → Mg(OH)₂(s)
The number of moles is equal in both sides
The moles of water is 4.50
The molar mass of water is 18.016 g/mol
mass × molar mass
4.50 × 18.016 = 81.1 g.
Thus, the number of grams of water reacting to make a mass of water is 81.1 g.
Learn more about mass
https://brainly.com/question/19694949
Complete the following statements of Dalton's atomic model: a) Elements are composed of minute, particles called atoms. b) Atoms of the same element are alike in and size. c) Atoms of different elements have different and sizes. d) Chemical are formed by the union of two or more different atoms of different elements. e) Atoms combine to form compounds in simple numerical , such as one to one, one to two, etc. f) Atoms of two may combine in different ratios to form more than one compound.
Answer:
a. Indivisible.
b. Mass.
c. Masses.
d. Compound.
e. Elements.
Explanation:
An atom can be defined as the smallest unit comprising of matter that forms all chemical elements. Thus, atoms are basically the building blocks of matters and as such defines the structure of a chemical element.
Generally, these atoms are typically made up of three distinct particles and these are protons, neutrons and electrons.
Hence, all the physical properties of a mineral result from the mineral's internal arrangement of atoms.
The following are statements postulated by the Dalton's atomic model;
a) Elements are composed of minute, indivisible particles called atoms.
b) Atoms of the same element are alike in mass and size.
c) Atoms of different elements have different masses and sizes.
d) Chemical compound are formed by the union of two or more different atoms of different elements.
e) Atoms combine to form compounds in simple numerical ratios, such as one to one, one to two, etc.
f) Atoms of two elements may combine in different ratios to form more than one compound.
balance the following equation in acidic solution:mno4-(aq) as4o6(s) → mn2 (aq) aso43-(g)what is the coefficient of water?
The balanced chemical equation is given as
MnO₄⁻(aq) + As₄O₆(s) + 7H₂O(l) → Mn²⁺(aq) + AsO₄³⁻(g) + 14H⁺(aq) + 5e⁻
The coefficient of water (H₂O) is 7.
To balance the equation in acidic solution:
MnO₄⁻(aq) + As₄O₆(s) → Mn²⁺(aq) + AsO₄³⁻(g)
We can balance the atoms one by one:
Balance the atoms other than oxygen and hydrogen:
MnO₄⁻(aq) + As₄O₆(s) → Mn²⁺(aq) + AsO₄³⁻(g)
Balance oxygen atoms by adding H₂O:
MnO₄⁻(aq) + As₄O₆(s) + 7H₂O(l) → Mn²⁺(aq) + AsO₄³⁻(g)
Balance hydrogen atoms by adding H⁺ ions:
MnO₄⁻(aq) + As₄O₆(s) + 7H₂O(l) → Mn²⁺(aq) + AsO₄³⁻(g) + 14H⁺(aq)
Balance the charge by adding electrons (e⁻):
MnO₄⁻(aq) + As₄O₆(s) + 7H₂O(l) → Mn²⁺(aq) + AsO₄³⁻(g) + 14H⁺(aq) + 5e⁻
Now the equation is balanced. The coefficient of water (H₂O) is 7.
Learn more about balanced chemical equation from the link given below.
https://brainly.com/question/14072552
#SPJ4
How many mL of a 6.0 M solution of HNO3 would be needed to prepare 300.0 mL of a 0.60 M solution of HNO3?
Answer:
500mL.
Explanation:
determine the energy change associated with the transition from n=2 to n=5 in the hydrogen atom.
The energy change associated with the transition from n = 2 to n = 5 in a hydrogen atom is determined using the formula:ΔE = -RH [(1/nf²) - (1/ni²)]where RH is the Rydberg constant, nf is the final energy level (n = 5), and ni is the initial energy level (n = 2).
The Rydberg constant (RH) is a fundamental physical constant relating to the electromagnetic spectra of atomic hydrogen, or the spectrum of a one-electron ion.
The Rydberg constant is defined as the wave number of the first spectral line of atomic hydrogen, i.e., 1.09678 × 107 m-1. Substituting the values into the formula: ΔE = -RH [(1/5²) - (1/2²)]ΔE = -2.179 × 10^-18 J = -13.6 eV.
Therefore, the energy change associated with the transition from n = 2 to n = 5 in a hydrogen atom is -2.179 × 10^-18 Joules or -13.6 electron-volts. This energy corresponds to the energy of the photon that is emitted or absorbed during the transition between the two energy levels.
To know more about Rydberg constant refer here: https://brainly.com/question/28168267#
#SPJ11
Write and balance the equation for the reduction of iodate by hydrogen sulfite ions to give iodide and sulfate in basic aqueous solution. Do not include phases. Plus signs (+) can be typed from the keyboard. Reaction arrows can be found in the Tools menu of the answer module. Use the left and right arrow keys to move the cursor out of a superscript or subscript in the module.
The reduction of iodate by hydrogen sulfite ions to give iodide and sulfate in basic aqueous solution is represented by the following equation:
IO3– + 3HSO3– + H2O → 3SO4^2– + I– + 2H+ + 2H2O
The balanced equation is:
2 IO3– + 6 HSO3– + 6 OH– → 6 SO4^2– + 2 I– + 9 H2O
To balance the given redox reaction, we follow these steps: Write the unbalanced chemical equation for the given reaction. Split the reaction into two half-reactions: oxidation and reduction.Balance the atoms that are not hydrogen or oxygen in each half-reaction. This is done by adding the appropriate coefficient to each species.Write balanced equations for each half-reaction.Combine the half-reactions to get a balanced overall equation.In the given reaction, iodate (IO3–) is reduced to iodide (I–) by hydrogen sulfite ions (HSO3–) to give sulfate (SO4^2–) in basic aqueous solution. The unbalanced chemical equation is:
IO3– + HSO3– → I– + SO4^2–
Step 2: We split the reaction into two half-reactions:'
Oxidation half-reaction: IO3– → I–
Reduction half-reaction: HSO3– → SO4^2–
Step 3: We balance the atoms that are not hydrogen or oxygen in each half-reaction. We see that the oxidation half-reaction is already balanced and we balance the reduction half-reaction as follows:
HSO3– → SO4^2– + 2 H+ + 2 e–
Step 4: We write balanced equations for each half-reaction.
IO3– + 6 H+ + 5 e– → I– + 3 H2O
HSO3– → SO4^2– + 2 H+ + 2 e–
Step 5: We combine the half-reactions to get a balanced overall equation.
IO3– + 6 HSO3– + 6 OH– → 6 SO4^2– + 2 I– + 9 H2O
Thus, the balanced equation is:
2 IO3– + 6 HSO3– + 6 OH– → 6 SO4^2– + 2 I– + 9 H2O
To know more about basic aqueous solution visit:
https://brainly.com/question/3449428
#SPJ11
Which of the following reactions are redox reactions? Check all that apply. Which of the following reactions are redox reactions?Check all that apply. a. 4K(s)+O2(g)→2K2O(s) b. Al(s)+3Ag+(aq)→Al3+(aq)+3Ag(s) c. Mg(s)+Br2(l)→MgBr2(s) d. SO3(g)+H2O(l)→H2SO4(aq)
The following reactions are redox reactions are,
a. 4K(s) + O2(g) → 2K2O(s)
b. Al(s) + 3Ag+(aq) → Al3+(aq) + 3Ag(s)
d. SO3(g) + H2O(l) → H2SO4(aq)
Redox (shorthand for reduction/oxidation reaction) reactions are chemical reactions in which the oxidation state of atoms is changed.
These reactions are the basis for batteries, fuel cells, and other energy storage devices, and they also play a crucial role in the metabolic processes of living organisms.
Example of a Redox reaction,
Al(s) + 3Ag+(aq) → Al3+(aq) + 3Ag(s)
In the above reaction, Al metal is oxidized (loses electrons) and Ag+ ions are reduced (gains electrons).
Learn more about the redox reaction:
brainly.com/question/24278513
#SPJ11
Why do girls like boys who act rude more than boys that are actually nice!
Answer:
When a guy who shows a girl to much emotion, they get turned off.
Explanation:
reaction of heating potassium permanganate produces potassium manganate
The statement "Reaction of heating potassium permanganate produces potassium manganate" is false.
The reaction of heating potassium permanganate (KMnO₄) does not produce potassium manganate (K₂MnO₄). Instead, it undergoes a thermal decomposition reaction, resulting in the formation of different products.
When heated, potassium permanganate decomposes into potassium manganate (K₂MnO₄), manganese dioxide (MnO₂), and oxygen gas (O₂).
The reaction can be represented as follows:
2 KMnO₄(s) → K₂MnO₄(s) + MnO₂(s) + O₂(g)
Therefore, heating potassium permanganate leads to the formation of potassium manganate, along with manganese dioxide and oxygen gas. The color change from purple to green observed during the reaction is due to the formation of potassium manganate.
However, it is important to note that potassium manganate is not the sole product of the reaction but one of the products alongside manganese dioxide and oxygen gas.
To know more about the reaction of heating refer here :
https://brainly.com/question/30464598#
#SPJ11
Complete question :
Reaction of heating potassium permanganate produces potassium manganate. T/F
A chemical reaction occurs according to the reaction mechanism shown below. Sort the chemical species involved into the appropriate categories.
H2O2(aq) + I-(aq) -> IO-(aq)+H2O(l)
H2O2(aq) + IO-(aq) -> I-(aq) +H2O(l) + O2(g)
what are the....
reactant :
product:
intermediate:
catalyst:
Reactants in the reaction are [tex]H_2O_2[/tex](aq),[tex]I^-[/tex](aq); Products are[tex]IO^-[/tex](aq), [tex]H_2O[/tex](l), [tex]O_2[/tex](g); Intermediate are [tex]IO^-[/tex]aq); and catalysts are None.
The first step of the mechanism is the rate-determining step. In this step, a hydrogen atom from hydrogen peroxide is transferred to an iodine ion, forming an intermediate called iodosyl ion. The iodosyl ion is then unstable and decomposes to form oxygen gas and another iodine ion.
The overall reaction is:
[tex]H_2O_2(aq) + I^-(aq) - > IO^-(aq) + H_2O(l) + O_2(g)[/tex]
The reactants are hydrogen peroxide and iodine ion. The products are iodosyl ion, water, and oxygen gas. The intermediate is iodosyl ion. There is no catalyst in this mechanism.
The rate-determining step is the slowest step in the mechanism. This is the step that determines the overall rate of the reaction. In this case, the rate-determining step is the step in which the hydrogen atom is transferred from hydrogen peroxide to iodine ion.
The intermediate is a chemical species that is formed in one step of the mechanism and is consumed in another step. In this case, the intermediate is iodosyl ion. It is formed in the first step of the mechanism and is consumed in the second step.
The catalyst is a chemical species that speeds up the rate of a reaction but is not consumed in the reaction. There is no catalyst in this mechanism.
To know more about Reactants, refer here:
https://brainly.com/question/31762756#
#SPJ11
How can your body be at risk for diseases?
Answer:
I'm not sure if this is true but in science class I learned that stress can cause a risk of diseases
Explanation:
the more months of stress you have, the higher the risk
Consider the compound whose condensed structural formula is shown below: CH3CH2COCH2CH2CH3 This compound ______ O can be reduced to form 3-hexene O can undergo only oxidation and reduction reactions O is named as 3-hexanal O can be formed by the oxidation of 3-hexanol
The compound CH3CH2COCH2CH2CH3 is named as 3-hexanone.
The given condensed structural formula represents a ketone called 3-hexanone. In the IUPAC nomenclature, the position of the carbonyl group (C=O) is indicated by the lowest possible number, which in this case is 3. The carbon chain consists of six carbon atoms (hexane) with a carbonyl group attached to the third carbon atom.
The compound 3-hexanone can undergo both oxidation and reduction reactions. As a ketone, it contains a carbonyl group that can be oxidized to form a carboxylic acid or reduced to form an alcohol. Therefore, it is not limited to only oxidation or reduction reactions.
The statement that the compound can be reduced to form 3-hexene is incorrect. Reduction of 3-hexanone would yield 3-hexanol, not 3-hexene. Reduction adds hydrogen to the carbonyl group, converting it to a hydroxyl group (-OH).
The compound with the condensed structural formula CH3CH2COCH2CH2CH3 is named 3-hexanone. It is a ketone that can undergo both oxidation and reduction reactions. However, it cannot be directly reduced to form 3-hexene; instead, reduction of 3-hexanone would yield 3-hexanol. The compound can be formed by the oxidation of 3-hexanol, where the alcohol group is converted to a carbonyl group.
To know more about structural formula visit:
brainly.com/question/29154542
#SPJ11
Select the correct answer.
Identify Bohr's model of the atom. His model describes the reactivity of an element based on its number of valence electrons.
Consider a solution formed by the dissolving of sodium acetate (NaC2H3O2) in pure water. Is the resulting solution acidic, basic or neutral? Why?
Acidic, because C2H3O2 is a strong acid.
Neutral, because hydrolysis of either ion does not occur in aqueous solution.
Basic, because C2H3O2 is the conjugate base of a weak acid.
Basic, because Na+ is the conjugate acid of a weak base.
Acidic, because C2H3O2 is a weak acid.
The resulting solution formed by the dissolving of sodium acetate in water is basic because C2H3O2 is the conjugate base of a weak acid.
When sodium acetate (NaC2H3O2) is dissolved in water, it dissociates into sodium ions (Na+) and acetate ions (C2H3O2-). Acetate ions act as the conjugate base of acetic acid (CH3COOH), which is a weak acid.
In water, acetate ions can accept protons from water molecules through hydrolysis to a small extent, resulting in the formation of hydroxide ions (OH-) and acetic acid. This reaction is a weak base reaction:
C2H3O2- + H2O ⇌ CH3COOH + OH-
The presence of hydroxide ions (OH-) in the solution makes it basic. The basic nature of the solution is primarily due to the hydrolysis of the acetate ions, which generate hydroxide ions, rather than the sodium ions (Na+) which do not significantly affect the pH.
Learn more about sodium acetate here, https://brainly.com/question/15037797
#SPJ11
In an insulated cup of negligible heat capacity, so g of water at 40°C is mixed with 30. g of water at 20.-C. The final temperature of the mixture is closest to 22°C 27°C 30.°C D 33°C 38°C 21.
The final temperature of the water mixture can be determined using the principle of conservation of energy.
When the two bodies of water are mixed, the heat lost by the hotter water is equal to the heat gained by the colder water.
The summary of the answer is: The final temperature of the water mixture is closest to 30°C.
To explain further, we can use the equation for heat transfer:
q = m * c * ΔT
Where:
q = heat transferred
m = mass of the substance
c = specific heat capacity
ΔT = change in temperature
For the hot water:
q1 = m1 * c * ΔT1
For the cold water:
q2 = m2 * c * ΔT2
Since the total heat transferred is zero (insulated cup), we have:
q1 + q2 = 0
m1 * c * ΔT1 + m2 * c * ΔT2 = 0
Plugging in the given values:
so * c * (40 - T) + 30 * c * (T - 20) = 0
Simplifying the equation and solving for T, we find:
10 * T = 400
T ≈ 40°C / 10 = 40°C / 10 = 4°C
Therefore, the final temperature of the water mixture is closest to 30°C.
Learn more about temperature, below:
https://brainly.com/question/15520591
#SPJ11
which one is correct for #4 ??
Answer:
The answer of this question is A
Answer: B is the right
Explanation:
someone help me answer this !
The amount of a solid substance that dissolves in a gas or in a liquid is affected by all of the following
except:
A- the nature of the substance
B- the temperature
C- the pressure
D- Stirring (Agitation)
Answer:
C. The Pressure
Explanation:
Pressure only affects the solubility of gases. It barely affects the solubility of solids and liquids.
How are the sun and Earth's moon different? (2 points)
a
The sun is a ball of gases that revolves around Earth, while the moon is the center of the solar system.
b
The sun is a ball of rock and gas, while the moon is a ball of rock that revolves around the sun.
c
The sun is the center of the solar system, while the moon is a ball of rock that revolves around Earth.
d
The moon is the center of the solar system, while the sun is the center of the Milky Way.
How does human consumption of limited resources (energy), impact the biosphere?
Human use of land has negative impacts. Human activities contribute to the erosion and pollution of beaches. Deforestation of land can also lead to desertification and a loss of biodiversity.
what is the most sold candy in America?
Explanation:
M&M's.
Reese's Peanut Butter Cups.
Hershey Bar.
Snickers.
Kit Kat.
Twix.
Twizzlers.
Skittles.
Calculate the pH for each of the following cases in the titration of 50.0 mL of 0.230 M HClO(aq) with 0.230 M KOH(aq). The ionization constant for HClO can be found here. (a) before addition of any KOH (b) after addition of 25.0 mL of KOH (c) after addition of 35.0 mL of KOH (d) after addition of 50.0 mL of KOH (e) after addition of 60.0 mL of KOH
By performing the necessary calculations for each case, we can determine the pH values for (a), (b), (c), (d), and (e) in the titration of HClO with KOH.
(a) Before the addition of any KOH, the solution contains only HClO. To calculate the pH, we need to consider the ionization of HClO. HClO is a weak acid, and its ionization can be determined using its ionization constant. By using the ionization constant and the initial concentration of HClO, we can calculate the concentration of H+ ions and convert it to pH.
(b) After adding 25.0 mL of KOH, a neutralization reaction occurs between HClO and KOH. The moles of HClO and KOH are now equal, and the solution contains the resulting salt. We can determine the concentration of OH- ions based on the amount of KOH added and calculate the pOH. From pOH, we can obtain the pH by subtracting it from 14.
(c) After adding 35.0 mL of KOH, the solution is still in excess of HClO. We need to determine the remaining moles of HClO and the resulting concentration of H+ ions to calculate the pH.
(d) After adding 50.0 mL of KOH, the moles of HClO and KOH become equal. The solution contains only the salt resulting from the neutralization reaction. We can calculate the concentration of OH- ions and convert it to pOH and then pH.
(e) After adding 60.0 mL of KOH, the solution is in excess of KOH. We need to determine the excess moles of KOH and calculate the concentration of OH- ions to obtain the pOH and pH.
To learn more about titration, click here: brainly.com/question/31483031
#SPJ11