The potential difference and the electric field strength of Two 2.40cm X 2.40cm plates that form a parallel-plate capacitor can be calculated by applying various formulae.
A. The potential difference across a capacitor can be calculated using the formula V = Q/C, where V is the potential difference, Q is the charge stored on the capacitor, and C is the capacitance. Given that the charge on the capacitor is +/- 0.708nC and the spacing between the plates is 1.30mm, we need to calculate the capacitance first. The capacitance of a parallel-plate capacitor is given by the formula C = ε0 * A / d, where ε0 is the permittivity of free space, A is the area of the plates, and d is the spacing between the plates. By substituting the given values, we can calculate the capacitance. Once we have the capacitance, we can use the formula V = Q/C to find the potential difference across the capacitor.
B. The electric field strength inside a capacitor can be calculated using the formula E = V/d, where E is the electric field strength, V is the potential difference, and d is the spacing between the plates. Given that the spacing between the plates is 2.60mm, and we already calculated the potential difference in part A, we can substitute these values into the formula to find the electric field strength inside the capacitor.
C. To find the potential difference across the capacitor if the spacing between the plates is 2.60mm, we can use the formula V = Q/C, where Q is the charge stored on the capacitor and C is the capacitance. We can use the previously calculated capacitance and the given charge to find the potential difference across the capacitor.
Learn more about area here:
https://brainly.com/question/27683633
#SPJ11
HELP
4(x-2+y)=???????
Answer:
4+4−8
Step-by-step explanation:
7. An article in a journal reports that 34% of American fathers take no responsibility for child care. A researcher claims that the figure is higher for fathers in the town of Littleton. A random sample of 225 fathers from Littleton, yielded 97 who did not help with child care. Using a .05 level of significance test the claim that the proportion is at least 34%.
The calculated value of z = 2.80 > the Critical value of z = -1.645, we reject the null hypothesis.
Hence, the claim that the proportion is at least 34% is rejected.
Therefore, the researcher's claim is true that the figure is higher for fathers in Littleton.
Null hypothesis:
H0: p ≥ 0.34
Alternative hypothesis:
Ha: p < 0.34
where:p = proportion of Littleton fathers who do not help with childcare
Here, the level of significance, α = 0.05
Level of significance = α = 0.05
The test statistics for a proportion is given as z-test.
The formula for calculating z-score for a proportion is: z = (p - P) / sqrt[P(1 - P) / n]
where:
P = Population proportion
p = Sample proportion
n = Sample size
The calculated value of z-statistics can be compared with the critical value of z-score from the standard normal distribution table at a particular level of significance.
If the calculated value of z is greater than the critical value of z, then we reject the null hypothesis; otherwise, we fail to reject the null hypothesis.
Calculating the z-statistic:
Here, Sample size n = 225
Sample proportion
p = 97/225
= 0.4311
Population proportion
P = 0.34z
= (p - P) / sqrt[P(1 - P) / n]z
= (0.4311 - 0.34) / sqrt[(0.34)(0.66) / 225]z
= 2.80
Since the alternative hypothesis is one-tailed (Ha: p < 0.34), the critical value of z at α = 0.05 can be found as follows:
The critical value of z = zα
= -1.645
Since the calculated value of z = 2.80 > the Critical value of z = -1.645, we reject the null hypothesis.
Hence, the claim that the proportion is at least 34% is rejected.
Therefore, the researcher's claim is true that the figure is higher for fathers in Littleton.
To know more about normal distribution visit:
https://brainly.com/question/15103234
#SPJ11
Point (2.-3) on glx) is transformed by -g[4(x+2)]. What is the new point? Show your work
After considering the given data we conclude that the new point generated is (2,3), under the condition that g(x) is transformed by [tex]-g[4(x+2)][/tex].
To evaluate the new point after the transformation of point (2,-3) by -g[4(x+2)], we can stage x=2 and g(x)=-3 into the expression [tex]-g[4(x+2)][/tex]and apply simplification to get the new y-coordinate. Then, we can combine the new x-coordinate x=2 with the new y-coordinate to get the new point.
Stage x=2 and g(x)=-3 into [tex]-g[4(x+2)]:[/tex]
[tex]-g[4(2+2)] = -g = -(-3) = 3[/tex]
The new y-coordinate is 3.
The new point is (2,3).
Hence, the new point after the transformation of point (2,-3) by [tex]-g[4(x+2)][/tex] is (2,3).
To learn more about transformation
https://brainly.com/question/29788009
#SPJ4
Rewrite the expression using a DIVISION SYMBOL: "The quotient of m and 7."
Answer:
m ÷ 7
Step-by-step explanation:
"Quotient" means you're dividing, so this just means you're dividing m by 7.
Pip was thinking of a number. Pip halves the number and gets an answer of 87.2. Form an
equation with x from the information.
X/2= 87.2
to find X:
87.2 X 2= 174.4
therefore X is 174.4
Find the value of X for which the following fraction is undefined
2x²+x-15
________
2/3x²-6
Answer: ±√2
Step-by-step explanation: A fraction is undefined when its denominator is =0 or undefined. so we need to get 2/3x²-6=0 or undefined. so we can also do 3x^2-6=0. Solving yields ±√2!
31 PIONTS GIVING BRAINIEST AWNSER Any tips on how to get a grade up ???
Answer:
Forgot picture?
Step-by-step explanation:
Answer:
You can get your grade up by studying, getting a tutor, paying attention in class, taking good notes, asking questions, and cheating (i don't recommend this one :/)
ht
Which of the following is an equivalent expression to the expressione,
А
B
D
ANSWER QUICK PLZ
How do you turn 5/2 into 10/4?
Answer:
YOU DO IT X 2
Step-by-step explanation:
0 Let x₁ = and x3 = B x2 = Write H Span{x1, x2, X3}. = - Use the Gram-Schmidt process to find an orthogonal basis for H. You do not need to normalize your vectors, but give exact answers. S 100.0000 V3
Main answer: An orthogonal basis for the given span H is {x1, x2-x1, x3 - (x1 + x2 - x1)} which simplifies to {x1, x2-x1, x3-x2}.
Supporting explanation: Given, x₁ = 0, x₂ = 1, x₃ = √3The span of H is the set of all linear combinations of x1, x2 and x3.So, we have to find an orthogonal basis for H using the Gram-Schmidt process. Let's start with the first vector x1 = [0, 0, 0]The second vector x2 is the projection of x2 onto the subspace perpendicular to x1. x2 is already perpendicular to x1 so x2-x1 = x2. So, the second vector is x2 = [0, 1, 0].The third vector x3 is the projection of x3 onto the subspace perpendicular to x1 and x2. x3 is not perpendicular to x1 and x2, so we subtract the projections of x3 onto x1 and x2 from x3. Projection of x3 onto x1:projx₁(x₃) = x₁ [(x₁ . x₃)/(x₁ . x₁)] = [0, 0, 0]Projection of x3 onto x2:projx₂(x₃) = x₂ [(x₂ . x₃)/(x₂ . x₂)] = [0, √3/3, 0]Therefore, x3 - projx₁(x₃) - projx₂(x₃) = [0, √3/3, √3]So, the orthogonal basis for H is {x1, x2-x1, x3 - (x1 + x2 - x1)} which simplifies to {x1, x2-x1, x3-x2}.
Know more about orthogonal here:
https://brainly.com/question/2292926
#SPJ11
QUICK! Giving brainliest to correct answer
Answer:
Dominos is the better deal.
how do you solve for the x ?
Answer:
x = -8
Step-by-step explanation:
these angles are vertical, therefore they are equal
x + 78 = 70
x = -8
Can someone state the range of this function pleaseee?
Answer:
Range = [0, ∞)
Step-by-step explanation:
Range is the y-values
For this question y starts at 0 and just continually goes up so:
Range = [0, ∞)
Bases are 6 and 10 the height is 4 whats the area of the trapszoid
Answer:
here,hope this helps : )
Step-by-step explanation:
Answer: A= 32
a (Base) 6
b (Base) 10
h (Height) 4
Step-by-step explanation: A=a+b
2h=6+10
2·4=32 I really hoped this helped
Sammy counts the number of people in one section of the school auditorium. He counts 18 female students, 16 male students, and 6 teachers. There are 720 people in the auditorium. Consider the probability of selecting one person at random from the auditorium
Correct Question:
He counts 18 female students, 16 male students, and 6 teachers. There are
720 people in the auditorium. Consider the probability of selecting one person
at random from the auditorium.
Which of these statements are true?
Choose all that apply.
A: The probability of selecting a teacher is 6%.
B : The probability of selecting a student is 85%.
C : The probability of selecting a male student is 32%.
D : The probability of selecting a female student is 45%.
Step-by-step explanation:
Option B and D are correct because
The total number of people in one cross section = 18 + 16 + 6 = 40.
A = The probability of selecting a teacher is = (6/40)x100 = 15 % not equal to 6 %
B = The probability of selecting a male student is = (34/40)x100 = 85%
C = The probability of selecting a male student is = (16/40)x100 = 40 % not equal to 32 %
D : The probability of selecting a female student is = (18/40)x100= 45%
A seventh-grade class raised $380 during a candy sale. They deposited the money in a savings account for 6 months. If the bank pays 5.3% simple interest per year, how much money will be in the account after 6 months?
Answer: You want to calculate the interest on $380 at 5.3% interest per year after .5 year(s).
The formula we'll use for this is the simple interest formula, or:
Where:
P is the principal amount, $380.00.
r is the interest rate, 5.3% per year, or in decimal form, 5.3/100=0.053.
t is the time involved, 0.5....year(s) time periods.
So, t is 0.5....year time periods.
To find the simple interest, we multiply 380 × 0.053 × 0.5 to get your answer.
Step-by-step explanation:
A type of origami paper comes in 15 cm by 15 cm
square sheets. Hilary used two sheets to make the
origami dog. What is the total area of the origami
paper that Hilary used to make the dog?
Answer:
150 cm squared
Step-by-step explanation:
I guess that's the answer if I'm wrong you can tell me right away so that I can try another method thank you.
In 3^6, 6 is called ___.
base
exponent
Step-by-step explanation:
the correct answer is exponent because 6 is its power.
hope this answer will help u.
have a great time.
A circle is inscribed in an isosceles trapezoid with bases of 8 cm and 2 cm. Find the probability that a randomly selected point inside the trapezoid lies on the circle
Given that a circle is inscribed in an isosceles trapezoid with bases of 8 cm and 2 cm. We need to find the probability that a randomly selected point inside the trapezoid lies on the circle.
The isosceles trapezoid is shown below: [asy] draw((0,0)--(8,0)--(3,5)--(1,5)--cycle); draw((1,5)--(1,0)); draw((3,5)--(3,0)); draw((0,0)--(1,5)); draw((8,0)--(3,5)); draw(circle((2.88,2.38),2.38)); label("$8$",(4,0),S); label("$2$",(1.5,5),N); [/asy]Let ABCD be the isosceles trapezoid,
where AB = 8 cm, DC = 2 cm, and AD = BC.
Since the circle is inscribed in the trapezoid, we can use the following formula:2s = AB + DC = 8 + 2 = 10 cm
Where s is the semi-perimeter of the trapezoid. Also, let O be the center of the circle. We can draw lines OA, OB, OC, and OD as shown below: [asy] draw((0,0)--(8,0)--(3,5)--(1,5)--cycle); draw((1,5)--(1,0)); draw((3,5)--(3,0)); draw((0,0)--(1,5)); draw((8,0)--(3,5)); draw(circle((2.88,2.38),2.38)); label("$A$",(0,0),SW); label("$B$",(8,0),SE); label("$C$",(3,5),N); label("$D$",(1,5),N); label("$O$",(2.88,2.38),N); label("$8$",(4,0),S); label("$2$",(1.5,5),N); draw((0,0)--(2.88,2.38)--(8,0)--cycle); label("$s$",(3,0),S); label("$s$",(1.44,2.38),E); [/asy]Since O is the center of the circle, we have:OA = OB = OC = OD = rwhere r is the radius of the circle.
Also, we have:s = OA + OB + AB/2 + DC/2s = 2r + 2s/2s = r + 5 cmWe can solve for r:r + 5 cm = 10 cmr = 5 cmNow that we know the radius of the circle, we can find the area of the trapezoid and the area of the circle.
Then, we can find the probability that a randomly selected point inside the trapezoid lies on the circle as follows:Area of trapezoid = (AB + DC)/2 × height= (8 + 2)/2 × 5= 25 cm²Area of circle = πr²= π(5)²= 25π cm²Therefore, the probability that a randomly selected point inside the trapezoid lies on the circle is:
Area of circle/Area of trapezoid= 25π/25= π/1= π
To know more about probability, visit:
https://brainly.com/question/31828911
#SPJ11
The probability that a randomly selected point inside the trapezoid lies on the circle is 0.399 or 39.9%. Therefore, option (A) is the correct answer.
The circle is inscribed in an isosceles trapezoid with bases of 8 cm and 2 cm.
Inscribed Circle of an Isosceles Trapezoid
Therefore, the length of the parallel sides (AB and CD) is equal.
Let the length of the parallel sides be ‘a’. Then, OB = OD = r (let)
It is also given that the lengths of the parallel sides of the trapezoid are 8 cm and 2 cm.
Then, its height is given by:
h = AB - CD / 2 = (8 - 2) / 2 = 3 cm
Therefore, the length of the base BC of the right-angled triangle is equal to ‘3’.
Then, the length of the other side (AC) can be given as:
AC = sqrt((AB - BC)² + h²) = sqrt((8 - 3)² + 3²) = sqrt(34) cm
The area of the trapezoid can be calculated as follows:
Area of the trapezoid = 1/2 (sum of the parallel sides) x (height)A = 1/2 (8 + 2) x 3A = 15 sq. cm.
The area of the circle can be given by:
Area of the circle = πr²πr² = A / 2πr² = 15 / (2 x π)
Therefore, r² = 2.39
r = sqrt(2.39) sq. cm.
Now, the probability that a randomly selected point inside the trapezoid lies on the circle can be calculated by dividing the area of the circle by the area of the trapezoid:
P (point inside the trapezoid lies on the circle) = Area of the circle / Area of the trapezoid
P = πr² / 15
P = π (2.39) / 15
P = 0.399 or 39.9%
The probability that a randomly selected point inside the trapezoid lies on the circle is 0.399 or 39.9%.
Therefore, option (A) is the correct answer.
To know more about probability, visit:
https://brainly.com/question/31828911
#SPJ11
Given the definitions of f(x) and g(x) below, find the value of (gof)(1).
f(x) = 2x² – 2x – 4
g(x) = -5x + 14
Answer:
[tex](g*f)(x) = 34[/tex]
Step-by-step explanation:
For sake of clarity, [tex](g * f)(x) = g(f(x))[/tex]
First, find [tex]f(1)[/tex]
[tex]f(1) = 2(1)^2 - 2(1) - 4\\f(1) = 2-2-4 \\f(1)=-4[/tex]
Then, take what you got for [tex]f(1)[/tex] and plug that into [tex]g(x)[/tex]. In this case, [tex]f(1) = -4[/tex]
[tex]g(-4) = -5(-4) + 14\\g(-4)= 20 + 14\\g(-4) = 34[/tex]
Please make sure to mark brainliest if this satisfies your
What is the range for the following data?
52, 32, 61, 82, 63
Answer:
The range would be 50.
Step-by-step explanation:
Range is found by putting a list or set of numbers in order, then subtracting the lowest number from the highest.
32, 61, 63, 52, 82
82 - 32 = 50
Which point on the graph represents the y-intercept?
Find the solution to the linear system of differential equations { 146 +24y 12x + 20y satisfying the initial conditions X(0) = 3 and Y(0) = 3. x(t)=__ y(t)=__
Therefore, the solution to the given system of differential equations, with the initial conditions x(0) = 3 and y(0) = 3, is:
x_(t) = 146t + 24yt + 3
y_(t) = (876t + 21) / ((-144) - 10t)
To solve the given linear system of differential equations, let's rewrite the system in a more standard form:
dx/dt = 146 + 24y
dy/dt = 12x + 20y
We'll use the initial conditions x_(0) = 3 and y_(0) = 3 to find the specific solution.
To solve the system, we can use the method of integrating factors.
Solve the first equation:
dx/dt = 146 + 24y
Rearrange the equation to isolate dx/dt:
dx = (146 + 24y) dt
Integrate both sides with respect to x:
∫dx = ∫(146 + 24y) dt
x = 146t + 24yt + C_(1) ---(1)
Solve the second equation:
dy/dt = 12x + 20y
Rearrange the equation to isolate dy/dt:
dy = (12x + 20y) dt
Integrate both sides with respect to y:
∫dy = ∫(12x + 20y) dt
y = 6x + 10yt + C_(2) ---(2)
Now, we'll apply the initial conditions x_(0) = 3 and y_(0) = 3 to find the values of C_(1) and C_(2).
From equation (1), when t = 0, x = 3:
3 = 146(0) + 24(3)(0) + C_(1)
C_(1) = 3
From equation (2), when t = 0, y = 3:
3 = 6(0) + 10(3)(0) + C_(2)
C_(2) = 3
Now, substituting the values of C_(1) and C_(2) back into equations (1) and (2), we get:
x = 146t + 24yt + 3
y = 6x + 10yt + 3
Simplifying further:
x = 146t + 24yt + 3
y = 6(146t + 24yt + 3) + 10yt + 3
x = 146t + 24yt + 3
y = 876t + 144y + 18 + 10yt + 3
x = 146t + 24yt + 3
y - 154y - 10yt = 876t + 18 + 3
(-144y) - 10yt = 876t + 21
y = (876t + 21) / (-144 - 10t)
Therefore, the solution to the given system of differential equations, with the initial conditions x(0) = 3 and y(0) = 3, is:
x_(t) = 146t + 24yt + 3
y_(t) = (876t + 21) / ((-144) - 10t)
To know more about differentiation:
https://brainly.com/question/31230190
#SPJ4
Write a function trapezium_integrator(f, start, end, num_traps) that uses the Trapezium Rule to evaluate the integral ∫endstartf(x)dx where f, start, and end are defined in the formula above, and num_traps is the number of trapeziums that the integration interval should be divided into.
Notes:
You may assume num_traps >= 1
Hint: This should be a simple modification of your code from the last question.
We are still expecting you to compute the width of each trapezium and then use a for loop to solve this problem, iterating over the trapeziums to sum their areas. A more efficient approach, using numpy and avoiding any explicit loops, is the topic of one of the challenge questions.
The function trapezium_integrator uses the Trapezium Rule to approximate the value of a definite integral. It takes four parameters: f, which represents the function to be integrated, start and end, which specify the interval of integration, and num_traps, the number of trapeziums used to approximate the integral.
In the Trapezium Rule, the interval of integration is divided into multiple trapeziums of equal width. The area of each trapezium is calculated as the sum of the lengths of its parallel sides divided by 2, multiplied by its height (the difference between the function values at the two endpoints of the trapezium). The areas of all trapeziums are then summed to obtain an approximation of the integral.
The function calculates the width of each trapezium by dividing the interval length by the number of trapeziums. It then uses a for loop to iterate over the trapeziums, accumulating their areas. The final result is returned as the approximation of the integral.
By dividing the interval into smaller trapeziums, the Trapezium Rule provides a reasonably accurate estimate of the integral. However, for highly oscillatory or irregular functions, a large number of trapeziums may be required to achieve sufficient accuracy. In such cases, more sophisticated numerical integration methods may be more appropriate.
Learn more about definite integral here:
https://brainly.com/question/30760284
#SPJ11
Find the zeros of the following quadratic functions.
3) x2 + 5x + 6 = 0
Brayden invests money in an account paying a simple interest of 3.3% per year. If he invests $30 and no money will be added or removed from the investment, how much will he have in one year, in dollars and cents?
Answer:
$30.99
Step-by-step explanation:
The formula for simple interest is I = PRT where I = interest earned, P = principal amount borrowed/deposited, R = rate as a decimal, and T = time in years.
I = (30)(0.033)(1)
I = 0.99
Then add that to the amount deposited ($30) and you're done.
30 + 0.99 = $30.99
Please let me know if you have questions.
The answer is $29.01
What is the simplified form of the following expression? Assume x>0. 4 square root 3 over 2x
Answer:
the answer is B)
4√24x^3/2x
Solution:
The answer is B
Step-by-step explanation:
I just took the test.
If S=4 [tex]\pi[/tex] [tex]r^{2}[/tex] the value of S When R= 10[tex]\frac{1}{2}[/tex]
Isaiah is decorating the outside of a box in the shape of a triangular prism. The figure
below shows a net for the box.
What is the surface area of the box, in square meters, that
Isaiah decorates
Answer:
389.19 m²
Step-by-step explanation:
The surface area of the box = area of the two equal triangles + area of the 3 different rectangles
✔️Area of the two equal triangles:
Area = 2(½*base*height)
base = 7 m
height = 8 m
Area of the two triangles = 2(½*7*8) = 56 m²
✔️Area of rectangle 1:
Area = Length*Width
L = 13 m
W = 7 m
Area of rectangle 1 = 13*7 = 91 m²
✔️Area of rectangle 2:
L = 13 m
W = 8 m
Area of rectangle 2 = 13*8 = 104 m²
✔️Area of rectangle 3:
L = 13 m
W = 10.63 m
Area of rectangle 3 = 13*10.63 = 138.19 m²
✅Surface Area of the box = 56 + 91 + 104 + 138.19 = 389.19 m²
help ASAP Ill give you brainliest
Answer:
none of these
Step-by-step explanation:
There are 3 boys walking
There are a total of 20 people
3/20 = 0.15
That is 15 percent, therefore none of these answers.
Step-by-step explanation:
any has at least one mode